Геном
Шрифт:
Сейчас я познакомлю вас с «тупицей». Я не хочу никого обидеть, просто так (dunce) называется мутант мушки, неспособный запомнить запах, после которого следует разряд тока. Мутант обнаружили в 1970-х годах, и он был первым в серии мутантов с проблемами обучения, полученных в опытах на мушках дрозофилах с помощью облучения. Мутанты отбирались по неспособности запоминать простые последовательности событий в эксперименте. Дефектные мушки отбирались для скрещивания, в результате чего вскоре появилось много разных линий мутантных дрозофил: cabbage (капуста), amnesiac (амнезивный), rutabaga (брюква), radish (редиска) и turnip (репа). (В генетике дрозофилы в отличие от генетики человека нет жестких требований к именованию генов, поэтому ученые придумывают что хотят.) На сегодняшний день известно 17 мутаций у мушки дрозофилы, ведущих к проблемам с памятью. Воодушевленный работами Канделя, Тим Тулли (Tim Tully) из известной лаборатории Колд-Спринг-Харбор (Cold Spring Harbor Laboratory) поставил перед собой задачу разобраться
Тулли прекрасно понимал, что если с помощью направленного мутагенеза ему удастся получить мутант, имеющий проблемы с обучением, то это даст ему в руки инструмент для управления обучаемостью. Повредив ген белка CREB, ученый получил мутантный вариант мух, способных к обучению, но быстро забывающих урок. Определив ключевой элемент обучаемости, Тулли вскоре получил другую мутацию, которая делала мух настолько способными, что они ухватывали суть после одного упражнения, тогда как для обычных мух урок приходилось проводить десятки раз, пока они не начинали распознавать запах, после которого следует разряд тока. Тулли говорил, что у этих мушек фотографическая память, но это свойство не делало их счастливыми. Уж очень они были зависимы от условностей, как мнительный человек, которому несколько раз попались статьи об авариях на велосипедах в солнечную погоду, в результате чего он отказался от поездок на велосипеде в светлое время суток. Мышление требует взвешенной работы двух процессов: запоминания и забывания. Со мной часто случается, что я точно помню, что уже читал этот текст или слушал передачу, но совершенно не помню, о чем пойдет речь дальше. Память как будто растворяется в прошлом: еще видны контуры, но уже не различимы детали. Неспособность забывать, это такая же болезнь памяти, как и неспособность обучаться (Tully Т. et al. 1994. Genetic dissection of consolidated memory in Drosophila. Cell79: 39-47; Dubnau J., Tully T. 1998. Genetic discovery in Drosophila: new insights for learning and memory. Annual Review of Neuroscience 21: 407-444).
Тулли верил, что в основе всех процессов памяти лежит белок CREB, который выполняет своеобразную роль повелителя целого сонма послушных генов. Стало ясно, что ключ к памяти лежит в генетике. Нам только показалось, что мы вышли из-под тирании генов, получив способность учиться, вместо того чтобы слепо следовать врожденным инстинктам, как тут же оказалось, что в основе обучения опять таки лежат гены, благодаря которым обучение стало возможным.
Вряд ли вас удивит тот факт, что белок CREB не является специфичным для червей и мух. Почти такой же ген есть у мышей, и уже получены мутантные мыши с дефектным геном CREB. Как и предполагалось, они оказались неспособными к запоминанию простейших вещей, например, где находится платформа для выхода из водного бассейна, — один из классических тестов проверки обучаемости у мышей. Они также не могли запомнить, какая еда безопасна, а какая содержит токсин. Любую мышь можно временно сделать забывчивой, если впрыснуть ей в мозг антисмысловую последовательность ДНК, временно блокирующую ген CREB. Сверхпамять и плохая забываемость соответствуют состоянию гиперактивации гена CREB (Silva A. J., Smith А. М., Giese К. Р. 1997. Gene targeting and the biology of learning and memory. Annual Review of Genetics 31: 527-546).
От генома мыши до генома человека всего один шаг. Ген CREB есть и у нас. Этот ген лежит на хромосоме 2, но на хромосоме 16 находится другой вспомогательный ген — CREBBP, который также вовлечен в процесс управления памятью. На хромосоме 16 лежит еще один ген памяти, кодирующий альфа-интегрин, что и дало мне право посвятить данную главу этой теме.
У плодовых мушек циклический АМФ наиболее активно синтезируется в особом отделе мозга, называемом грибовидным тельцем; он представляет собой группу нейронов, вздымающуюся в виде грибовидного отростка над и без того крошечным мозгом едва заметной мушки. Если в мозгу мухи нет грибовидного тельца, она полностью теряет способность к обучению в тестах с запахами и электрическим разрядом. Грибовидное тельце выступает чем-то вроде офиса для белка CREB и циклического АМФ. Только сейчас мы начинаем понимать, как работает эта система. Проведя систематический поиск мутантов, имеющих проблемы с обучением, Рональд Дэвис (Ronald Davis), Майкл Гротеуил (Michael Grotewiel) и их коллеги в Хьюстоне открыли у дрозофил еще одну мутацию, которую назвали vo- lado. (Это слово на сленге чилийских студентов обозначает неуклюжего и рассеянного человека. Именно так студенты Сантьяго называют своих профессоров.) Также, как и в случае с мутациями dunce, cabbage и rutabaga, мушки-volado испытывают проблемы с запоминанием простых тестов, но в отличие от других мутаций ген volado не имеет ничего общего с циклическим АМФ и с белком CREB. Данный ген кодирует рецептор белка, называемого альфа-интегрином, который также синтезируется в грибовидном тельце. Скорее всего, этот белок управляет образованием новых синапсов между нейронами и интеграцией их в сеть.
Чтобы проверить, не является ли этот ген «геном китайских палочек» (см. главу 12), т.е. не является ли его влияние на память опосредованным ухудшением общего состояния здоровья мушки, исследователи из Хьюстона провели великолепно спланированный эксперимент. В яйцеклетки мушек с разрушенным геном volado они вставили генетическую кассету с активной копией этого гена. Секрет
Тот факт, что белок, роль которого состоит в управлении образованием синапсов, является ключевым элементом запоминания, наводит нас на мысль, что память сама по себе является совокупностью синапсов между нейронами. Изучая что-либо, мы изменяем физическую сеть нейронов мозга таким образом, чтобы с помощью образования новых связей там, где их раньше не было или они были слабы, записать в памяти новую информацию. Я готов принять, что память работает именно так, но постичь этот процесс я не могу. Каким образом слово «volado» может быть представлено комбинацией синапсов? Чтобы понять это, моему мозгу явно не хватает синапсов. Впрочем, проблема памяти не станет проще, если свести ее к комбинациям молекул в нейронах. Ученым предстоит раскрыть еще одну грандиозную тайну человечества — тайну памяти. Каким сверхмощным компьютером нужно обладать, чтобы разобраться в хитросплетениях миллиардов нейронов, которые не только предоставляют механизм памяти, но сами и являются памятью! По-моему, это куда более сложная и интригующая тема, чем квантовая физика, не говоря уже о всякой ерунде, связанной с летающими тарелками.
Давайте познакомимся с тем, что уже известно об этой великой тайне. Обнаружение мутации volado подбросило нам гипотезу, что интегрин играет ключевую роль в процессах обучения и запоминания. Но еще раньше у ученых уже были сведения о важности интегрина. Так, к началу 1990-х годов уже было известно, что лекарства, блокирующие интегрин, влияют на память. Особо сильное воздействие эти препараты оказывают на процесс длительной потенциации, т.е. на долговременную и ассоциативную память. В глубине мозга находится структура, называемая гиппокампом (от греч. hippocampus — морской конек). Часть гиппокампа называют рогом Амона (древнеегипетский бог, которого часто изображали в виде козла или барана и которого Александр Македонский объявил своим отцом после таинственного посещения им оазиса Сива в Ливии). В роге Амона собрано множество пирамидальных нейронов (опять ассоциация с Древним Египтом), к которым подходят многочисленные отростки сенсорных нейронов. Пирамидальный нейрон довольно трудно активизировать. Для этого требуется по крайней мере несколько импульсов, пришедших одновременно от разных сенсорных нейронов. После активизации пирамидальный нейрон становится более чувствительным, но его чувствительность избирательна. Он реагирует только на сигналы от тех нейронов, которые активизировали его. Так, вид пирамиды и слово «Египет» могут образовать пару с общим пирамидальным нейроном, в результате чего один сигнал вызывает ассоциацию с другим сигналом. В то же время словосочетание «морской конек», даже если сигнал от него направляется к тому же самому пирамидальному нейрону, не вызывает ассоциаций ни с пирамидами, ни с Египтом, поскольку сигналы не были одновременными. Это пример работы процесса длительной потенциации. Возможно, теперь, если вы услышите слово «Египет», вам вспомнится пирамидальный нейрон. Это значит, что у вас в гиппокампе сложилась еще одна ассоциация.
Долговременная потенциация, также, как и процесс обучения морских червей, полностью основана на изменении физиологических свойств синапсов. В данном случае изменяется проводимость синапсов между сенсорными и пирамидальными нейронами. Изменение свойств синапсов происходит с участим интегрина. Интересно, что блокирование инегрина не мешает возникновению ассоциации, но препятствует закреплению этой ассоциации на длительное время. Вероятно, от интегрина как-то зависит прочность образовавшегося синапса.
Рассмотрев приведенные выше примеры, можно предположить, что память хранится в пирамидальных нейронах. Воспоминания о детстве вообще не связаны с гиппокам- пом. Они хранятся в коре головного мозга. В гиппокампе происходит подготовка материала для длительного запоминания. Каким-то образом вновь появившиеся ассоциации передаются в кору головного мозга для длительного хранения. Мы знаем это благодаря врачебным описаниям последствий нескольких трагических несчастных случаев, произошедших в 50-х годах прошлого столетия. Один из пациентов, известный в научной литературе как Н.М., перенес лоботомию, необходимую для прекращения припадков эпилепсии, которые появились у него после аварии на велосипеде. Другой пациент, известный как N.A., был оператором авиационного радара. Однажды он собирал модель самолета за своим столом, чтобы скоротать время. Так случилось, что он отвлекся от своего занятия и резко повернулся. В это время его товарищ, тоже видимо от скуки, упражнялся с рапирой и как раз делал выпад вперед. Рапира прошла через ноздрю прямо в мозг несчастного.
Оба человека по сей день страдают амнезией. Они помнят только то, что было с ними в детстве и в молодости, но память резко обрывается на событиях, происшедших за несколько лет до несчастного случая. Они помнят и могут повторить то, что произошло несколько минут назад, если не перебить их. Но стоит их отвлечь, и память моментально стирается. Кратковременная память не переходит в долговременную. Они не помнят лиц людей, с которыми встречаются каждый день на протяжении всех лет после несчастного случая. N.A., у которого амнезия в более легкой форме, жаловался, что не может смотреть фильмы, так как за время рекламы полностью забывает, о чем был фильм.
Голодные игры
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
рейтинг книги
Найденыш
2. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
рейтинг книги
Игра Кота 2
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
рейтинг книги
Связанные Долгом
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
рейтинг книги
Адвокат вольного города 3
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
рейтинг книги
Квантовый воин: сознание будущего
Религия и эзотерика:
эзотерика
рейтинг книги
Вечная Война. Книга II
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
рейтинг книги
Русь. Строительство империи 2
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
рейтинг книги
Сердце Дракона. Том 11
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
рейтинг книги
Энциклопедия лекарственных растений. Том 1.
Научно-образовательная:
медицина
рейтинг книги
