Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Никакая теория не обходится без изъянов. Данная тео­рия слишком проста, чтобы быть правдоподобной. В част­ности, исходя из этой теории, можно предположить, что изменения в диверсифицированных генах должны проис­ходить довольно часто, поскольку временный успех одного из генов в паре генов-антагонистов стимулирует развитие другого гена. Но сравнение диверсифицированных генов у разных видов не подтвердило эту догадку. Напротив, оказа­лось, что такие гены довольно консервативны. Все больше становится ясно, что теория Хэйга объясняет лишь неко­торые случаи импринтинга (Hurst L. D., McVean G. Т. 1997. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends in Genetics 13: 436-443; Hurst L. D. 1997. Evolutionary theories of genomic imprinting. In: Reik W., Surani A. (eds), Genomic imprinting, p. 211-237. Oxford University Press, Oxford).

Импринтинг генов ведет к удивительным последствиям. У мужчин материнская копия хромосомы 15

содержит в себе знак того, что она пришла от матери. Но уже в следую­щем поколении у дочери или сына эта же хромосома будет содержать знак отцовского происхождения. В какой-то мо­мент должно произойти переключение знака хромосомы на противоположный. Нет сомнений в том, что такое пере­ключение происходит, поскольку только этим можно объ­яснить синдром Ангельмана. Никаких видимых поврежде­ний на хромосоме 15 нет, просто две хромосомы ведут себя так, как будто обе произошли от отца. Это объясняется тем, что в нужный момент в организме матери не произошло переключение знака хромосомы. Возникновение данной проблемы можно проследить в поколениях и обнаружить мутацию в небольшом участке ДНК, непосредственно при­мыкающем к диверсифицированным генам. Это так на­зываемый центр импринтинга, который каким-то образом указывает на происхождение хромосомы. Импринтинг генов осуществляется с помощью метилирования — биохи­мического процесса, о котором мы уже говорили при рас­смотрении хромосомы 8 (Horsthemke В. 1997. Imprinting in the Prader-Willi/Angelman syndrome region on human chro­mosome 15. In: Reik W., Surani A. (eds), Genomic imprinting, p. 177-190. Oxford University Press, Oxford).

Как вы помните, метилирование «буквы» С осуществля­ется клеткой для того, чтобы отключить ненужные гены и взять под домашний арест эгоистичные самокопирующие­ся участки ДНК. Но на ранних этапах развития эмбриона при образовании так называемых бластоцитов происходит деметилирование хромосом. Гены затем вновь метилиру­ются на следующем этапе развития эмбриона — гаструля- ции. Однако деметилирование происходит не полностью. Диверсифицированным генам как-то удается ускользнуть от данного процесса, при этом активизируется либо толь­ко материнский ген, либо только отцовский, тогда как дру­гой парный ген остается метилированным (неактивным). Существует много версий того, как это все происходит, но пока нет ни одного экспериментально подтвержденного варианта (Reik W., Constancia М. 1997. Making sense or anti- sense? Nature 389: 669-671).

Именно неполное деметилирование диверсифициро­ванных генов делает такой сложной задачей клонирование млекопитающих. Например, жаб можно очень просто кло­нировать, взяв ядро из любой клетки тела и поместив его в яйцеклетку. Но такую процедуру не удается выполнить с клетками млекопитающих, поскольку в любой клетке как женского, так и мужского организма какая-то часть генов, важных для развития эмбриона, обязательно отключена в результате метилирования. Поэтому вскоре после откры­тия явления импринтинга генов было заявлено, что кло­нирование организма млекопитающих в принципе невоз­можно. В клонированном эмбрионе диверсифицирован­ные гены будут либо включены, либо выключены на обеих хромосомах, что приведет к дисбалансу в развитии эмбри­она. «Таким образом, — делает вывод ученый, открывший импринтинг генов, — успешное клонирование млекопита­ющих с помощью ядер соматических клеток представляет­ся невозможным» (McGrath J., Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. СейЪТ.179-183; Barton S. C„ Surami M. A. H., Norris M. L. 1984. Role of paternal and maternal genomes in mouse development. Nature ?Л\: 374-376).

Тем не менее совершенно неожиданно в 1997 году в Шотландии появилась клонированная овца Долли. До сих пор создателям Долли и других клонов, вскоре последовав­ших за ним, не совсем ясно, как удалось обойти проблему импринтинга. Похоже, что процедуры, которым подвер­галась соматическая клетка перед клонированием, стерли всю информацию о происхождении хромосом (Jaenisch R. 1997. DNA methylation and imprinting: why bother? Trends in Genetics 13: 323-329).

Диверсифицированный участок хромосомы 15 содер­жит около восьми генов. Ген, отсутствие которого ведет к развитию синдрома Ангельмана, называется UBEfi. Непосредственно за ним следуют два других гена, которые считают основными кандидатами на роль генов, вызываю­щих синдром Прадера-Вилли. Эти гены называются SNRPN и IPW. До конца их роль не установлена, но можно предпо­ложить, что виною всему является поломка в гене SNRPN.

В отличие от других генетических заболеваний данные синдромы вызваны не мутациями в соответствующих ге­нах, а другими причинами. При формировании яйцеклет­ки в яичниках обычно ей достается одна пара хромосом. В редких случаях происходит сбой во время разделения хромосом, и в одной яйцеклетке оказываются две парные хромосомы. После оплодотворения такой яйцеклетки в ней уже оказывается три пары хромосом: две от матери и одна от отца. Обычно такое случается при позднем материнстве и заканчивается, как

правило, гибелью эмбриона. Только в том случае, если в яйцеклетке оказывается три хромо­сомы 21, которая является самой маленькой хромосомой человека, эмбриону удается выжить. При этом рождается ребенок с синдромом Дауна. Во всех остальных случаях наличие лишней хромосомы ведет к такой диспропорции биохимических реакций в клетках, что развитие эмбриона становится невозможным.

Яйцеклетка не столь беззащитна перед превратностями судьбы. В короткий период от оплодотворения до начала развития эмбриона она может освободиться от лишней хро­мосомы. В результате в клетке остается, как и положено, две парные хромосомы. Но в механизме удаления лишней хромо­сомы не учитывается ее происхождение, поэтому удаление происходит случайным образом. Хотя случайное удаление гарантирует, что в 66% случаев клетка избавится от одной из материнских хромосом, изредка удаляется отцовская хромо­сома, и развитие эмбриона продолжается с двумя материн­скими хромосомами. Опять таки, как правило, это не имеет большого значения, но не в случае с хромосомой 15. Если в яйцеклетке оказались две материнские хромосомы 15, то сразу два генаUBE/l, вместо одного, включаются в работу, но не работает ни один ген SNRPN. И как результат — син­дром Прадера-Вилли (Cassidy S. В. 1995. Uniparental disomy and genomic imprinting as cause of human genetic disease. Environmental and Molecular Mutagenesis 26: 13-20; Kishino Т., Wagstaff J. 1998. Genomic organisation of theUBE/l/E&AP gene and related pseudogenes. Genomics47:101-107).

На первый взгляд ген LIBERA не кажется таким уж важным. Его продуктом является Е., убихинон лигаза— белковый клерк среднего уровня с не вполне ясной функцией, которая работает в некоторых тканях кожи и в лимфатических клет­ках. Позже, в 1997 году, сразу три группы ученых обнаружили, что этот ген включается также в тканях мозга как у мышей, так и у человека. Вот это важное открытие! Оба синдрома, Прадера-Вилли и Ангельмана, указывают на определенные органические повреждения мозга больных. Более того, ока­залось, что и многие другие диверсифицированные гены работают в мозгу. При исследовании мозга мыши были по­лучены данные о том, что лобные доли развиваются в боль­шей степени под контролем генов матери, тогда как за ги­поталамус несут ответственность отцовские гены (Jiang Y. et al. 1998. Imprinting in Angelman and Prader-Willi syndromes. Current Opinion in Genetics and developments: 334-342).

Дисбаланс был обнаружен с помощью одного тонкого метода, состоящего в создании «химерных» организмов. Химерами в генетике называют организмы, полученные в результате слияния клеток двух генетически неоднород­ных организмов. Такое случается в природе, в том числе у людей. Человек никогда не догадается, что он является «химерой», если не произвести детальный генетический анализ. Просто два эмбриона на самых ранних стадиях раз­вития объединяются и продолжают развитие как один ор­ганизм. Можно рассматривать данный феномен как явле­ние, обратное появлению однояйцовых близнецов. Вместо двух организмов с одинаковым геномом, получается один организм, клетки которого содержат хромосомы двух раз­ных геномов.

В лабораторных условиях довольно просто получить хи­мерную мышь. Нужно лишь слегка спрессовать клетки за­родышей на ранней стадии развития. Но исследователи из Кембриджа кое-что добавили в данный эксперимент: они объединили нормальный эмбрион мыши с эмбрионом, по­лученным из яйцеклетки с двумя парами материнских хро­мосом (в яйцеклетке объединили проядрышки из этой и другой яйцеклетки). В результате получился мышонок с не­вероятно большой головой. В другом эксперименте второй зародыш получали путем слияния двух проядрышек сперма­тозоидов, т.е. второй эмбрион содержал только отцовские хромосомы. В этот раз химерный мышонок получался с большим телом, но маленькой головой. Кроме того, клетки с материнскими хромосомами были предварительно обра­ботаны особым образом, в результате чего ученые смогли определить их распределение в эмбрионе. Оказалось, что стриатум, кора головного мозга и гиппокамп у экспери­ментальной мыши состояли в основном из клеток, управ­ляемых материнскими хромосомами, тогда как такие клет­ки почти отсутствовали в гипоталамусе. В коре головного мозга происходит обработка сигналов из окружающего мира и формируются поведенческие реакции. Отцовские хромосомы оказались слабо представленными в головном мозге, но их значительно больше в мышечной ткани. Что касается головного мозга, то они оказывают существенное влияние на гипоталамус, гипофиз и предзрительное поле. Эти области мозга лежат в основе «лимбической системы», ответственной за управление эмоциями. Роберт Триверс (Robert Trivers) в шутку сказал, что кора головного мозга берет на себя заботу по общению с родственниками с мате­ринской стороны, тогда как гипоталамус выступает совер­шенно эгоистичным органом (Allen N. D. 1995. Distribution of pathenogenetic cells in the mouse brain and their influence on brain development and behaviour. Proceedings of the National Academy of Sciences of the USA 92: 10782-10786; Trivers R, Burt A. 1999. Kinship and genomic imprinting. Results and problems in cell differentiation 25: 1-21).

Поделиться:
Популярные книги

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Волчья воля, или Выбор наследника короны

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Волчья воля, или Выбор наследника короны

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Миротворец

Астахов Евгений Евгеньевич
12. Сопряжение
Фантастика:
эпическая фантастика
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Миротворец

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1