Графика DirectX в Delphi
Шрифт:
Поскольку значения в массиве pict лежат в пределах диапазона типа Byte, то для 16-битного режима картинка получится не очень выразительной и отображается оттенками одного цвета.
Сохранение растровых изображений
Наверняка перед вами рано или поздно встанет задача сохранения получающихся картинок. Если вы попытаетесь их скопировать в буфер обмена для дальнейшей вставки в рисунок графического редактора, то обнаружите проблему с 256-цветными приложениями. Картинки будут искажаться, поскольку палитра
Я приведу простейшее решение проблемы, основанное на использовании объекта класса TBitmap. В предыдущем примере обработчик формы нажатия клавиши приведите к следующему виду:
procedure TfrmDD. FormKeyDown (Sender: TObject; var Key: Word
Shift: TShiftState) ; var
BitMap : TBitmap; // Для записи картинок в файл begin
case Key of
VK NEXT : BlurFactor := BlurFactor + 1;
VK_PRIOR : begin
BlurFactor := BlurFactor - 1;
if BlurFactor < 1 then BlurFactor := 1;
end;
VK_HOME : begin
Inc (ParticleCount, 1000);
if ParticleCount > MaxParticles then ParticleCount := MaxParticles;
end;
VK_END : begin
Dec {ParticleCount, 1000);
if ParticleCount < 2000 then ParticleCount := 2000;
end;
// По нажатию пробела содержимое экрана сохраняется в файле
VK_SPACE : begin
BitMap := TBitmap.Create;
BitMap.PixelFormat := pf24bit; // Разрядность задаем 24
BitMap.Height := ClientHeight;
BitMap.Width := ClientWidth;
// Копируем в BitMap содержимое экрана
BitBlt(BitMap.Canvas.Handle, 0, 0, ClientWidth, ClientHeight,
Canvas.Handle, 0, 0, SRCCOPY);
BitMap.SaveToFile ('l.bmp'); // Записываем в файл
end;
VK_ESCAPE,
VK_F12 : Close;
end;
end;
Записываются 24-битные файлы, и информация о цвете не теряется в любом случае.
Доступ к пикселам в 16-битном режиме
В таком режиме информация о цвете пиксела разделяется на три цветовые составляющие, но шестнадцать на три нацело не делится, поэтому разработчики вынуждены прибегать к неравномерному распределению. Наиболее распространенной является схема 5-6-5. В этом формате первые пять битов хранят значение красного оттенка, следующие шесть битов отводятся под зеленую составляющую, ну и последние пять битов заняты оттенком синего. Всего получается 65 536 (216) различных цветов. Из них по 32 градации красного и синего, 64 градации зеленого.
Схема 5-6-5 является самой распространенной. Поэтому для начала будем опираться именно на нее. Как быть
Для примера возьмем цвет, образованный следующими значениями составляющих:
* красный, 5 бит: 00011; зеленый, 6 бит: 001011; синий, 5 бит: 00101.
Значение пиксела с таким цветом будет следующим (пробелы вставлены для удобочитаемости):
0001 1001 ОНО 0101
Все выглядит просто, имея значение трех составляющих, мы должны в пиксел заносить значение по следующей формуле:
blue + green * 2"5 + red * 2Л11 или blue + green * 64 + red * 4096
Операции умножения и деления с участием степени двойки лучше оптимизировать с помощью операции сдвига. Теперь окончательная формула выглядит так:
blue OR (green SHL 5) OR (red SHL 11)
Иллюстрация в виде примера последует позже, а сейчас задержимся на том, как вырезать из пиксела значения составляющих. Для этого применяются битовые маски. Так, для получения значения пяти битов красной составляющей надо использовать бинарное число
1111 1000 0000 0000
и логическую операцию AND для вырезания значения первых пяти битов. Вот так:
0001 1001 ОНО 0101 &
1111 1000 0000 0000
– ------------------------------
0001 1000 0000 0000
Результат найден, как видим, верно, но ему предшествуют одиннадцать нулей. Чтобы получить значение составляющей, надо применить к этому выражению операцию битового сдвига вправо. Вот пример для красной составляющей:
Red : Byte;
Red := (pixel & $F800) SHR 11;
Или, если поменять порядок действий, вырезать ее можно так:
Red := (pixel SHR 11) AND $lf;
Маска в этом случае та же - пять единиц, но без завершающих одиннадцати нулей.
Перейдем к иллюстрации - проекту каталога Ех17. Работа его выглядит очень просто, на экране появляются вспышки синих и красных частиц. Работа с системой частиц во многом похожа на код предыдущего примера, но теперь воспользуемся концепцией ООП:
const
MAX ENERGY =60; // Максимальная энергия частицы
DEFAULT_SIZE =200; // Количество частиц во вспышке
DEFAULT_POWER =30; // Для зарядки энергии частицы
type
TParticle = record // Данные на отдельную частицу
X, Y : Single; // Позиция
SpeedX, SpeedY : Single; // Скорости по осям
Energy : Integer; // Энергия
Angle : Integer; // Направление движения
R, G, В : Byte; // Цвет
end;
TParticleSystem = class // Класс системы частиц