Чтение онлайн

на главную - закладки

Жанры

Гравитация. От хрустальных сфер до кротовых нор

Петров Александр Николаевич

Шрифт:

Пространство Минковского

Тогда нарушается закон причинно-следственной связи, закон, от которого я совершенно не собирался отказываться из-за каких-то паршивых попугаев, да еще дохлых вдобавок…

Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»

Как мы уже отметили, в СТО пространство и время нужно рассматривать как единый четырехмерный континуум – его называют пространством Минковского. Тогда непривычные (для бытового восприятия) свойства теории объяснять и интерпретировать значительно легче. Пространство Минковского представляют в виде диаграммы с временной и пространственными осями. На временной оси в качестве отсчета используется время, умноженное на скорость света – ct, это упрощает анализ, поскольку все данные

имеют одинаковую размерность. Пространственные координаты, также для простоты, часто представлены только координатой x, хотя, конечно, подразумеваются все три. Кроме того, в отличие от общепринятых диаграмм, здесь роль функции играет время, а аргумента – пространственные координаты.

Диаграмма пространства Минковского, точно так же, как обычные диаграммы, используется для отображения в виде графика пути, который проходит материальная частица с течением времени. Если частица движется равномерно и прямолинейно – ее путь будет прямой линией, а котангенс угла наклона к оси x равен скорости частицы в долях скорости света. На рис. 5.2 изображен путь такой частицы от начала координат до точки A. Прямые, направленные под углом 45°, отображают пути фотонов, движущихся со скоростью света как через начало координат, так и через точку А в разные стороны. Позже мы определим такие «фигуры» как световые конусы. Движение частицы от точки А возможно только внутри конуса, поскольку ее скорость не может превышать световую.

Рис. 5.2. Путь частицы на диаграмме пространство-время

Если частица движется произвольно, то ее путь будет представлен кривой, а котангенс угла наклона касательной к оси x в какой-либо точке будет равен скорости частицы в момент, соответствующий этой точке.

Как в СТО, так и в общей теории относительности (мы увидим это позднее) ключевым понятием является метрическое пространство. Под этим понимается некое множество точек, переход между которыми осуществляется непрерывным образом и определено понятие расстояния между ними. Вспомним обычное пространство Евклида. Квадрат расстояния r между началом координат и точкой с декартовыми координатами x, y, z определяется по правилу: r2 = x2 + y2 + z2.

Эта величина всегда положительная, за исключением случая, когда длина равна нулю.

Пространство Минковского тоже метрическое. Однако в нем расстояние между двумя точками называется интервалом и определяется непривычным образом. Квадрат интервала s между началом координат и какой-либо точкой 4-мерного пространства-времени (рис. 5.2) определяется по правилу:

s2 = c2t2x2y2z2 = c2t2r2.

Временную координату ct и пространственные координаты Декарта x, y, и z, представляющие единую координатную сетку в пространстве Минковского, обычно называют координатами Лоренца. Как видно, временная и пространственные части в определении интервала входят с разными знаками. Из-за этого квадрат интервала может быть положительным, нулевым и даже отрицательным. Пространства, в которых расстояния определяются таким образом, называются псевдоевклидовыми.

Итак, пространство Минковского –

это псевдоевклидово метрическое пространство, объединяющее время (длительность) и пространство (протяженность, 3-мерное пространство Евклида).

Точки в пространстве Минковского называют событиями или мировыми точками. Таким образом, каждой мировой точке соответствует момент времени и точка в 3-мерном пространстве. А интервал – это расстояние между двумя мировыми точками или, в ряде интересных случаев, промежуток времени между двумя событиями.

Теперь попытаемся понять, как в рамках исходной системы отсчета в пространстве Минковского выглядит другая инерциальная система отсчета. Оси 0ct и 0x (см. рис. 5.2) в исходной системе образуют базис. Путь наблюдателя, связанного с исходной системой, направлен вдоль оси 0ct. Для него же ось 0x и параллельные ей линии – это сечения одновременности. Наблюдатель другой инерциальной системы движется прямолинейно и равномерно по отношению к первой. Тогда ясно, что его путь направлен вдоль наклонной прямой, например, 0А на рис. 5.2. Для движущегося наблюдателя сечения одновременности также наклонятся. Остается сделать вывод: чтобы перейти к базису движущейся инерциальной системы отсчета нужно осуществить поворот исходного базиса. При этом угол поворота соответствует относительной скорости между системами. Вспомним, что две системы отсчета связаны преобразованиями Лоренца. Именно поэтому такие повороты базиса называют лоренцевыми вращениями.

На рис. 5.3 на диаграмме пространства Минковского изображен базис неподвижной системы K с нештрихованными координатами, и базис движущейся в направлении оси 0x со скоростью V инерциальной системы отсчета K’ с штрихованными координатами. Теперь выпишем преобразования Лоренца от одних координат к другим:

Преобразования дают возможность заключить, что обе системы отсчета эквивалентны. Действительно, если выразить штрихованные координаты через нештрихованные, то получим те же самые преобразования:

с заменой знака «плюс» перед V на «минус» – по отношению к штрихованной системе нештрихованная движется в противоположном направлении.

Одно из достоинств геометрической интерпретации пространства Минковского состоит в том, что лоренц-инвариантность выражается в инвариантности относительно лоренцевых вращений. В частности, значение интервала, записанного выше, не изменяется после поворота базиса, хотя теперь выражается через новые (штрихованные) координаты нового базиса. Чтобы убедиться в этом нужно лоренцевы преобразования (А) подставить в выражение для квадрата интервала, записанного выше. В результате получим

s2 = c2t'2x'2y'2 z' 2 = c2t'2r'2.

то есть s = s’.

В инвариантности интервала нет ничего удивительного – это лишь геометрическое свойство пространства Минковского, а не следствие каких-то принципов. Действительно, поскольку интервал – это длина в метрическом пространстве, то эта величина не зависит от способов измерения (использования той или иной координатной сетки). Замечательно другое – известные геометрические свойства псевдоевклидовых пространств оказались весьма полезными для описания СТО.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Инквизитор Тьмы 4

Шмаков Алексей Семенович
4. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 4

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?