Гравитация. От хрустальных сфер до кротовых нор
Шрифт:
Первые попытки построения релятивистской теории гравитации
Сделай первый шаг и ты поймешь, что не всё так страшно.
Но вернемся в дорелятивистские времена XIX века, когда не было специальной теории относительности. Несомненно интерес к построению неньютоновских вариантов теории гравитации был вызван успехами электромагнетизма. Сам Максвелл, уже представивший миру уравнения электродинамики и воодушевленный этим успехом, в 1865 году опубликовал работу, где предположил, что гравитация может быть описана уравнениями, подобными уравнениям электромагнетизма. Однако его вариант теории приводил к отрицательной энергии статического гравитационного поля и отрицательному потоку гравитационной энергии. Это его остановило, и он не стал развивать
Были и другие попытки. Но мы не ошибемся, если скажем, что первым ученым, представившим в 1893 году релятивистскую теорию гравитации, был английский математик и физик Оливер Хевисайд (1850–1925). Это теория векторного поля (похожая на электродинамику), инвариантная к преобразованиям Лоренца, хотя сами преобразования Лоренца еще не были построены. В своей исследовательской деятельности Хевисайд очень много внимания уделял электродинамике. Поэтому его интерес и усилия, направленные на построение аналогичной теории гравитации, вполне объяснимы. Он придал уравнениям Максвелла современный явно лоренц-инвариантный вид – это 4 векторных дифференциальных уравнения (до этого использовались 20 уравнений с 12 неизвестными). А поэтому, тот факт, что он представил лоренц-инвариантные гравитационные уравнения, также не очень удивителен.
Сразу после создания специальной теории относительности, в 1905 году, Пуанкаре представил свои уравнения векторной гравитации, сохраняющиеся при преобразованиях Лоренца и подобные уравнениям Максвелла. Как модель, Пуанкаре рассматривает параллельное движение двух тел, неподвижных друг относительно друга. На основе преобразований Лоренца Пуанкаре выводит ряд инвариантов, сохраняющихся при этих преобразованиях, а затем рассматривает их возможное значение. В теории Пуанкаре получается, что полная сила гравитации имеет два компонента. Один из них, обычный, связан с расстоянием до притягивающего тела, а второй компонент определяется скоростью этого тела и является аналогом магнитной силы в электродинамике. Без второго компонента гравитационной силы нарушилась бы лоренц-инвариантность и известный уже результат о замедлении времени в движущихся системах отсчета.
Позднее появились подобные работы Минковского и Лоренца и других авторов, целью которых было (как и в работе Пуанкаре) представить модифицированный закон Ньютона в лоренц-инвариантной форме. Это были теории векторного поля, распространяющегося в пространстве Минковского, речь об искривлении пространства-времени пока не шла вообще. Но векторные теории, включая и самую раннюю теорию Хевисайда, не могли объяснить сдвиг перигелия Меркурия, некоторые из теорий были внутренне противоречивы. Как и электродинамика, векторные теории предсказывают генерацию и распространение волн (гравитационных векторных), но в отличие от электродинамики эти волны должны переносить отрицательную энергию, что, конечно, недопустимо.
Действительно, простая модель двух связанных тел в пустом пространстве Минковкого, излучая гравитационные волны, будет наращивать полную энергию!? Фактически вечный двигатель!? Такая ситуация возникает из-за того, что тяготеющие заряды (массы) одного знака притягиваются, в отличие от зарядов в электродинамике. После появления ОТО и подтверждения нескольких ее эффектов интерес к векторным теориям пропал. Со временем их перестали активно обсуждать, энтузиазм разрешать их противоречия угас.
Среди релятивистских теорий гравитации, возникших до общей теории относительности, нельзя не упомянуть скалярную теорию Эйнштейна и голландского физика Адриана Фоккера (1887–1972), представленную в 1914 году. Эта теория обобщала аналогичные предшествующие теории. Новаторским было то, что она была первой теорией, инвариантной относительно произвольных преобразований координат и описывала искривленное пространство-время. Правда, она, как и другие релятивистские скалярные теории, не объясняла всех явлений, которые объясняет ОТО.
Принципы построения ОТО
Не природа …сообразуется с принципами, а наоборот, принципы верны лишь постольку, поскольку они соответствуют природе…
Пришло время начать рассказ собственно об общей теории относительности, о принципах ее построения. Сначала вспомним факт равенства инертной и тяготеющей масс, установленный еще Галилеем, затем подтвержденный Ньютоном и другими учеными, который
Если гравитационная масса точно равна инертной, то они могут быть заменены одна на другую как во втором законе Ньютона, так и в законе всемирного тяготения. Из этого следует, что ускорение тела, на которое действуют лишь гравитационные силы, не зависит от массы (или каких-то других свойств этого тела)! А значит и траектория тела не зависит от его массы. Но тогда, если все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение нужно связать не со свойствами тел, а со свойствами самого пространства в этой точке. Поскольку в общем случае траектории тел, движущихся в гравитационном поле других тел, искривлены, то логично предположить, что пространство, в котором есть гравитационное взаимодействие, также искривлено. Далее, СТО убедительно показала, что пространство и время являются единой физической реальностью. Поэтому описание гравитационного взаимодействия между телами нужно сводить к описанию искривленного пространства-времени (рис. 6.1).
Но каково свободное движение тела, если пространство-время искривлено? Здесь разумно снова вернуться к СТО и первому закону Ньютона. В инерциальной системе отсчета такие тела движутся прямолинейно и равномерно. В искривленном пространстве аналогом прямых линий являются геодезические.
Рис. 6.1. Движение искривленном пространстве
Их теория подробно разработана математиками XIX века. Основной вклад внес немецкий математик Бернхард Риман (1826–1866). В искривленном пространстве нет параллельных линий в понимании Евклида, сумма углов треугольника не равна 180°. Для примера рассмотрим поверхность Земли – это сфера, которая является 2-мерным пространством положительной кривизны. Что такое геодезическая на поверхности Земли? Это не прямая линия на карте, а дуга большого круга, который проходит через центр Земли (рис. 6.2). Именно с помощью такой дуги определяется кратчайшее расстояние между двумя точками на Земле. Сумма углов треугольника на поверхности Земли оказывается больше 180°.
Рис. 6.2. Линии кратчайшего расстояния на сфере
Снова вспомним, что в релятивистской теории пространство и время не рассматриваются (не существуют) раздельно. Поэтому разумно рассматривать не траектории тел, а их мировые линии на пространственно-временной диаграмме. Инерциальному движению в плоском пространстве-времени соответствуют мировые линии, которые тоже прямые. А каковы мировые линии в искривленном пространстве-времени? Опираясь на слабый принцип эквивалентности, Эйнштейн предложил принцип движения по геодезическим. Он звучит в одном из определений так: если нет других воздействий, кроме гравитационного, то тело движется свободно, по инерции, его мировая линия в пространстве-времени является геодезической. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жестко связанными с телом. Вспомним, что при обсуждении «парадокса близнецов» мы уже установили, что максимальное собственное время, требуемое для перемещения в плоском пространстве из одной мировой точки в другую, соответствует движению по прямой. Современные эксперименты подтверждают движение тел по геодезическим линиям с такой же точностью, как и равенство гравитационной и инертной масс. Отметим, что часто слабый принцип эквивалентности и принцип движения по геодезическим не разделяют.