Хаос. Создание новой науки
Шрифт:
Как представлял себе Шольц, в компетенцию геофизиков входило описание поверхности Земли — поверхности, чье соприкосновение с океанами формирует береговую линию. Твердая земная кора включает в себя зоны разрывов и расселин. Сдвигов, изломов и трещин на каменном лике Земли такое количество, что именно они дают ключ к тайнам планеты. Для постижения этих тайн они значат больше, чем слагающие земную кору горные породы. Расселины пересекают поверхностный слой нашей планеты в трех измерениях, образуя то, что Шольц назвал «распадающейся оболочкой». Эта оболочка регулирует циркуляцию в земной коре воды, нефти, природного газа. Она влияет на землетрясения. Постижение свойств поверхностей представляло собой задачу первостепенной важности, но Шольц полагал, что его наука зашла в тупик. Откровенно говоря, не от чего было даже оттолкнуться.
Геофизики рассматривали поверхности как рельефы — чередование
Представьте себе, что наблюдаете поверхность земного шара из открытого космоса, с расстояния в сто километров. Линия поверхности то опадает, то вздымается, огибая деревья, бугорки, здания и — где-нибудь на автостоянке — «фольксваген». В таком масштабе автомобиль — лишь одна из многочисленных выпуклостей, неупорядоченный фрагмент. Или вообразите, что мы придвигаемся к машине все ближе и ближе, рассматриваем ее в лупу или даже в микроскоп. Сначала, по мере того как округлость бамперов и капота пропадает из поля зрения, очертания становятся более плавными. Затем проявляются бугорки на поверхности стального корпуса. Расположение их произвольно, оно кажется хаотическим.
Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Металлурги обнаружили то же самое по отношению к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Шольц размышлял о классической геологической формации — об осыпи на склоне горы. С большого расстояния она кажется одной из двухмерных Евклидовых форм, тем не менее геолог, приближаясь, обнаруживает, что двигается не столько по поверхности такой формы, сколько внутри нее. Осыпь распадается на валуны размером с легковую машину. Ее действительная размерность составляет уже около 2,7, поскольку каменистые поверхности, загибаясь и сворачиваясь, занимают почти трехмерное пространство, подобно поверхности губки.
Фрактальные изображения незамедлительно нашли применение в целом ряде областей, связанных со свойствами контактирующих поверхностей. Например, соприкосновение автомобильных покрышек и бетона — достаточно сложный предмет для исследования, как и соединение узлов или электрических контактов в механизмах. Свойства соединенных поверхностей совершенно отличны от свойств соприкасающихся поверхностей. Различие их обуславливается характером фрактального наложения составляющих поверхности бугорков. Один из простых, но весьма важных постулатов фрактальной геометрии состоит в том, что контактирующие поверхности соприкасаются далеко не везде, — соприкосновению препятствует их бугристость, прослеживаемая в любом масштабе. Даже в скале, подвергшейся огромному давлению, при достаточно большом увеличении можно заметить крошечные промежутки, сквозь которые просачивается жидкость (Шольц назвал это «эффектом Шалтая-Болтая»). Именно поэтому никогда не удается соединить осколки разбитой чашки. Даже если они, на первый взгляд, совпадают, при большем увеличении становится видно, что беспорядочно расположенные бугорки просто не сходятся.
В своей области Шольц стал известен как один из немногих, кто принял на вооружение технику фрактальных измерений. Он понимал, конечно, что некоторые коллеги считают его занятия чудачеством. Включив в название статьи термин «фрактальный», он стал ловить на себе и восхищенные, и осуждающие взгляды. Одни признавали его новатором, другие — всего лишь конъюнктурщиком, примкнувшим к модному научному направлению. Даже написание работ давалось ему мучительно трудно, так как он хотел найти понимание не только у горстки единомышленников, но
Насколько он велик? Какова его продолжительность?Таковы, пожалуй, основные вопросы, интересующие ученого, который впервые столкнулся с тем или иным феноменом. Они настолько фундаментальны и важны для умозрительного восприятия мира человеком, что не сразу замечаешь в них некое предубеждение. Ведь эти вопросы предполагают, что размер и продолжительность — качества, зависящие от масштаба, — заключают в себе определенный смысл, помогая описать объект или классифицировать его. При описании биологом человека, а физиком — кварка использование названных категорий действительно вполне уместно. Животные, зачастую обладающие внушительными размерами, увязываются с определенными масштабами. Представьте, что человек стал вдвое больше обычного, но сохранил те же пропорции, — кости его просто разрушатся под тяжестью возросшей массы тела. Следовательно, масштаб очень важен.
Раздел физической науки, имеющий дело с подземными толчками, почти не связан масштабом. Землетрясение большой силы — то же малое, только в увеличенном масштабе. Именно эта черта отличает исследование сейсмической активности от изучения животных. К организму длиной в десять дюймов нужно подходить с иной меркой, нежели к существу однодюймовой длины. Если же тварь вымахала до ста дюймов и скелет ее держит возросшую массу тела, нужна совсем иная «конструкция». Облака, подобно землетрясениям, могут быть сведены к определенному масштабу. Характерная для них беспорядочность — ее вполне можно описать в терминах фрактального измерения — совсем не меняется при изменении масштаба. Вот почему, путешествуя по воздуху, совсем не ощущаешь, насколько далеко от тебя находится то или иное облако. Даже в ясную погоду облако, проплывающее в двадцати футах от наблюдателя, может быть неотличимо от того, что находится на расстоянии, в сотню раз большем. Анализ снимков, полученных со спутников, показал инвариантное фрактальное измерение облаков, наблюдаемых на расстоянии сотен миль.
Довольно сложно отделаться от привычки рассматривать явления прежде всего с точки зрения их размера и продолжительности. Однако фрактальная геометрия утверждает, что при исследовании некоторых фрагментов окружающего мира поиски присущего лишь им масштаба только отвлекают от сути. Возьмем хотя бы ураган, представляющий собой вихрь определенного размера. Однако природа не умещается в рамки людских дефиниций. Ученые-метеорологи постепенно осознают, что вихрь в воздухе образует сплошную среду, начиная от порывистого кружения мусора на тротуаре и заканчивая огромными системами циклонов, видимыми из космоса. Разделение на категории лишь сбивает с толку.
Уравнения, описывающие потоки жидкости, во многих случаях применяются без оглядки на масштаб. При этом штормы небольшой силы имитируют (правда, с небольшими ограничениями) более разрушительные.
Кровеносные сосуды, начиная от аорты и заканчивая капиллярами, образуют сплошную среду иного типа. Многократно разветвляясь и делясь, они становятся столь узкими, что площадь их поперечного сечения оказывается сравнимой с размерами кровяной клетки. И такие разветвления имеют фрактальную природу, напоминая своей структурой один из уродливых объектов, придуманных математиками под эгидой Мандельбро. В силу физиологической необходимости кровеносные сосуды приобрели просто удивительные свойства. Подобно тому как кривая Коха «сжимает» бесконечно длинную линию в ограниченное пространство, в системе кровообращения поверхность с огромной площадью должна вместиться в ограниченный объем. Из всех ресурсов человеческого тела кровь — один из самых дорогих, и поэтому пространство ценится на вес золота. Используя возможности фрактальных структур, природа столь эффективно сконструировала человеческий организм, что в большинстве тканей каждая клетка отделена от кровеносного сосуда не более чем тремя или четырьмя подобными ей. При всем том сами сосуды и циркулирующая по ним кровь занимают совсем небольшое пространство — около 5 % объема тела. И все же нельзя взять ни фунта, ни даже миллиграмма плоти, не пролив крови.
Саженец
3. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Эртан. Дилогия
Эртан
Фантастика:
фэнтези
рейтинг книги
Полковник Империи
3. Безумный Макс
Фантастика:
альтернативная история
рейтинг книги
Хозяин Теней 3
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
рейтинг книги
Vivuszero
Старинная литература:
прочая старинная литература
рейтинг книги
Душелов. Том 2
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
рейтинг книги
Черный дембель. Часть 5
5. Черный дембель
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Свет Черной Звезды
6. Катриона
Любовные романы:
любовно-фантастические романы
рейтинг книги
Бастард Императора. Том 3
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Крутой маршрут
Документальная литература:
биографии и мемуары
рейтинг книги
Дремлющий демон Поттера
Фантастика:
фэнтези
рейтинг книги
