Хаос. Создание новой науки
Шрифт:
Подобные представления бытовали до тех пор, пока человек не вооружился телескопами и микроскопами. Сделав первые открытия, ученые поняли, что каждое изменение масштаба обнаруживает новые феномены и новые виды поведения. Современные специалисты в области физики частиц даже не видели этому конца: каждый новый, более мощный ускоритель расширял поле зрения исследователей, делая доступными все более крошечные частицы и более краткие временные промежутки.
На первый взгляд, идея постоянства при изменяющихся масштабах малопродуктивна, отчасти потому, что один из основных научных методов предписывает разбирать предмет исследования на составляющие и изучать мельчайшие частицы. Специалисты, разъединяя объекты, рассматривают порознь их элементы в каждый момент времени. Намереваясь изучить взаимодействие субатомных частиц, они исследуют две или три сразу, что, казалось бы, уже довольно сложно. Однако внутреннее подобие
Надо отметить, что Мандельбро весьма умело воспользовался своей геометрией. Возвращение в науку идей масштаба в 60-70-х годах стало интеллектуальным течением, показавшим себя одновременно во многих областях. Намек на внутреннее подобие содержался в работе Лоренца 1963 г.: ученый интуитивно улавливал его в изяществе графиков, отображавших системы уравнений. Лоренц ощущал присутствие некой структуры, но видеть ее не мог из-за несовершенства компьютера. «Определение масштабов» стало движением в физической науке, которое вело — пожалуй, даже более целенаправленно, нежели исследования Мандельбро, — к дисциплине, известной под названием «хаос». Даже в весьма отдаленных сферах ученые начинали думать на языке теорий, использовавших иерархии масштабов. Так, например, произошло в эволюционной биологии, развитие которой подводило к убеждению, что целостная теория должна описывать феномен развития сразу и в генах, и в единичных организмах, и в видах и родах.
Можно, пожалуй, назвать парадоксом то, что инструмент масштабирования оценили по достоинству благодаря появлению в арсенале исследователей технических средств, сделавших более совершенным взгляд на мир. Именно по этой причине ушли в небытие ранние идеи о внутреннем подобии. Непостижимым образом к исходу XX века необычайно маленькие и невообразимо большие явления стали вполне обыденными, появились снимки огромных галактик и мельчайших атомов, отпала нужда по примеру Лейбница мысленно представлять части Вселенной, видимые только в микроскоп или телескоп. Приборы сделали подобные изображения частью жизни. Переход к новым способам сравнения большого и малого превратился в неизбежность. Некоторые из них даже обнаруживали продуктивность — при условии, что исследователь готов был продолжать поиски аналогов в уже имеющихся знаниях.
Нередко ученые, чье внимание привлекла фрактальная геометрия, ощущали некое эмоциональное сходство между новой математической эстетикой и веяниями в искусстве второй половины XX века, свободно черпая из культуры львиную долю энтузиазма, весьма полезного в исследованиях. Для Мандельбро миниатюрным воплощением Евклидовой точности вне пределов математики стала архитектура. Столь же успешно ее мог бы олицетворять стиль живописи, лучшим образцом которого являются цветные квадраты Джозефа Альберса: скромные, аккуратно-линейные, редукционистско-геометрические. Геометрические— здесь данный эпитет подразумевает то же, что обозначал многие тысячи лет. Здания, называемые геометрическими, имеют простые формы — сочетание прямых линий и окружностей, которые можно описать лишь несколькими числами. Мода на геометрическую архитектуру и живопись приходила и уходила, архитекторы уже не стремились возводить незатейливые небоскребы вроде Сигрэм-Билдинг в Нью-Йорке, а ведь не так давно это весьма популярное строение широко копировалось. Такую перемену вкусов Мандельбро и его последователи объясняли весьма тривиально: простые формы чужды человеку, не созвучны способу организации природы и образу восприятия мира людьми. Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности после исследований сверхпроводимости, как-то заметил: «Почему силуэт согнувшегося под напором штормового ветра обнаженного дерева на фоне мрачного зимнего неба воспринимается как прекрасный, а очертания современного многофункционального здания, несмотря на все усилия архитектора, вовсе не кажутся такими? Сдается мне, что ответ, пусть отчасти и умозрительный, диктуется новыми взглядами на динамические системы. Наше чувство прекрасного „подпитывается“ гармоничным сочетанием упорядоченности и беспорядка, которое можно наблюдать в естественных явлениях: облаках, деревьях, горных цепях или кристаллах снежинок. Все такие контуры суть динамические процессы, застывшие в физических формах, и для них типична комбинация устойчивости и хаотичности».
Геометрической форме присущ масштаб, характерный для нее размер. По Мандельбро, истинное искусство не имеет определенного масштаба в том смысле, что в созданиях его важные детали повторяются в нескольких масштабах, больших и малых. Нью-йоркскому Сигрэм-Билдинг он противопоставляет архитектуру барокко, с его скульптурами и горгульями, внешними углами и каменными
Восхищаться гармоничной архитектурой — одно, а поражаться буйной дикости природы — совсем другое. Говоря на языке эстетики, фрактальная геометрия привнесла в науку по-современному острое и тонкое восприятие неприрученной, дикой природы. Когда-то влажные тропические леса, пустыни, поросшие кустарником бесплодные пустоши воплощали собой целину, которую должно покорить общество. Желая насладиться цветением и ростом, люди любовались садами. Как писал Джон Фаулс, имея в виду Англию XVIII века, «эпоха неуправляемой и первобытной природы кажется весьма тяжелым временем и навевает мысли об агрессивной необузданности, отталкивающей и неумолимо напоминающей о грехопадении, изгнании человека из Эдема… И даже естественные науки остались, в сущности, враждебными дикой природе, рассматривая ее как нечто такое, что должно приручить, классифицировать, использовать и эксплуатировать». Но к концу XX века культура стала иной, а вместе с ней изменилась и наука.
Итак, наука все же нашла применение малопонятным и причудливым формам вроде последовательности Кантора и кривой Коха. Первоначально они проходили в качестве доказательств в бракоразводном процессе между математикой и физикой на рубеже XIX–XX веков. Конец этого альянса широко обсуждался в академической среде начиная со времен Ньютона. Математики, подобные Кантору и Коху, восхищались собственной самобытностью, они вообразили, что могут перехитрить природу, но на самом деле им не удалось даже близко сравняться с ней. Всеми почитаемое магистральное направление физики также отклонилось в сторону от повседневного опыта. Лишь позже, когда Стив Смэйл вновь вернул математику к изучению динамических систем, физик мог уверенно заявить: «Мы должны принести благодарность астрономам и математикам за то, что они передали нам, физикам, поле деятельности в гораздо лучшем состоянии, чем то, в котором мы оставили его семьдесят лет назад».
Невзирая на достижения Смэйла и Мандельбро, именно физики в конце концов создали новую науку о хаосе. Мандельбро подарил ей особый язык и множество удивительных изображений природы. Как он сам признавался, его теории описывалилучше, чем объясняли.Он мог составить перечень фрагментов окружающего мира — береговых линий, паутины рек, древесной коры, галактик — и их фрактальных измерений. Ученые использовали его идеи для составления прогнозов, однако физики стремились постичь первопричину, ибо в природе существовали некие формы, невидимые, но внедренные в самую суть движения. Физики хотели знать больше и ждали своего часа.
Глава 5
Странные аттракторы
В больших круговоротах — малые,
Рождающие скорость,
А в малых — меньшие и меньшие,
Рождающие вязкость.
Проблема турбулентности имеет богатую историю. Все великие физики ломали над ней голову. Плавный поток разбивается на завитки и вихревые токи; беспорядочные изгибы разрушают границы между жидкостью и твердой поверхностью; энергия из крупномасштабного движения быстро перетекает в мелкие завихрения. Почему? Пожалуй, самые разумные идеи предлагали математики, большинство же физиков попросту опасались изучать турбулентность, которая казалась почти непостижимой. Доказательством тому может служить история о Вернере Гейзенберге, известном ученом, занимавшемся квантовой физикой. Последний признался на смертном одре, что хотел бы задать Господу Богу два вопроса — об основах относительности и о причине турбулентности. «Думаю, что Господь ответит мне на первый из них», — заметил Гейзенберг.
Теоретическая физика и явление турбулентности закончили игру вничью, — наука словно бы наткнулась на заколдованную черту и замерла возле нее. Вблизи магической границы, где вещество еще устойчиво, есть над чем поработать. К счастью, плавно текущая жидкость ведет себя совсем не так, как если бы каждая из бессчетного множества молекул двигалась самостоятельно: капельки жидкого вещества, находившиеся рядом в начальной точке, обычно остаются поблизости друг от друга, словно лошади в упряжке. Инженеры-гидротехники располагают вполне надежными уравнениями, описывающими поведение такого ламинарного потока: они используют знания, накопленные еще в XIX веке, когда движение жидкостей и газов являлось одной из первостепенных проблем физической науки.