Хаос. Создание новой науки
Шрифт:
Странный аттрактор обитает в фазовом пространстве — одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов — фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.
В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.
Но как же все данные о сложнейшей
Впрочем, столкнувшись с одним из проявлений реальности — трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор — простейший из возможных — подобен магниту величиной с булавочную головку, встроенному в лист резины.
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, — «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом — значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три измерения, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.
Даже топологу с самой развитой фантазией нелегко представить пространства, обладающее четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с буйным, необоримым чудищем турбулентности, которому присущи многообразие форм, неопределенное число «степеней свободы», бесконечное количество измерений?
Физики имели вполне вескую причину, чтобы с
Рис. 5.1. Новый способ изучения маятника.
Одна лишь точка в фазовом пространстве (справа)передает всю информацию о состоянии динамической системы в конкретный момент времени (слева). Для простого маятника достаточно двух чисел, представляющих его скорость и местоположение.
Точки образуют траекторию, которая позволяет наглядно представить непрерывное поведение динамической системы в течение длительного периода времени. Повторяющаяся «петля» отображает систему, которая всегда воспроизводит одно и то же свое состояние. Если повторяющееся поведение устойчиво, как у часов с маятником, система при незначительных помехах возвращается к прежней орбите движения. В фазовом пространстве траектории вблизи орбиты как бы вовлечены в нее, а сама орбита является аттрактором.
Рис. 5.2. Аттрактор может являть собой одну-единственную точку. В случае с маятником, непрерывно теряющим энергию на трение, все траектории имеют форму спирали, закручивающейся внутрь, по направлению к точке, в которой система устойчива, — в таком случае движения не наблюдается вообще.
Как и многие из тех, кто занимался хаосом, Давид Руэлль подозревал, что видимые в турбулентном потоке объекты: перепутанные струи, спиральные водовороты, волшебные завитки, появляющиеся и вновь исчезающие, — должны отражать то, что объяснялось законами физики, но еще принадлежало к сфере таинственного и неоткрытого. В его понимании рассеивание энергии в турбулентном потоке должно было вести к своеобразному сокращению фазового пространства, притягиванию к аттрактору. Бесспорно, последний не оставался неподвижной точкой, поскольку поток никогда не приходил в состояние покоя, — энергия поступала в систему и уходила из нее. Каким еще мог быть аттрактор? Помимо описанного, согласно догмату, существовал лишь один возможный тип — периодический аттрактор, или замкнутая кривая, орбита, притягивающая все близлежащие орбиты. Если маятник получает энергию от подвеса и теряет ее из-за трения, то устойчивая орбита может представлять собой замкнутую петлю в фазовом пространстве, отражающую, например, регулярные колебательные движения маятника дедушкиных часов. Неважно, где именно начнет двигаться маятник, в конечном счете он придет именно к данной орбите. Но придет ли? В силу неких начальных условий (а они характеризуются минимумом энергии) маятник остановится. Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой — фиксированной точкой. Каждый из аттракторов имеет собственную «нишу» в фазовом пространстве. В целом это напоминает две речные долины, разграниченные водоразделом.
В короткий период времени каждая точка фазового пространства может означать возможное поведение динамической системы. При изучении долгосрочной перспективы единственными моделями поведения становятся сами аттракторы. Все иные типы движения преходящи. По определению, аттракторам присуще важнейшее качество — устойчивость. В реальной системе, где движущиеся элементы сталкиваются и раскачиваются из-за помех окружающей среды, движение обычно возвращается к аттрактору. Толчок способен ненадолго исказить траекторию, однако возникающие случайные движения быстро исчезают, — даже если вдруг кошка заденет часы с маятником, минута не увеличится до шестидесяти двух секунд. Однако турбулентность в жидкостях — явление иного порядка, никогда не порождающее единичный ритм. Известное свойство такого явления заключается в том, что в данный момент времени наблюдается весь спектр возможных колебаний. Турбулентность можно сравнить с «белым шумом» или статикой. Могла ли простая детерминистская система уравнений описывать подобный феномен?