Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

11. Метод главных компонент (Principal Component Analysis, PCA): Это метод для снижения размерности данных, сохраняя при этом наибольшее количество информации. PCA находит новые признаки (главные компоненты), которые являются линейными комбинациями исходных признаков и позволяют сократить количество признаков, сохраняя при этом основные характеристики данных.

12. Метод оптимизации гиперпараметров (Hyperparameter Optimization): Это процесс подбора наилучших гиперпараметров модели, которые не могут быть изучены во время обучения

модели, но влияют на ее производительность. Методы оптимизации гиперпараметров помогают выбрать оптимальные значения для параметров модели, улучшая ее обобщающую способность и точность предсказаний.

Эти методы и алгоритмы представляют лишь часть широкого спектра техник и подходов, используемых в машинном обучении. В зависимости от конкретной задачи и характеристик данных, могут применяться различные комбинации этих методов для достижения оптимальных результатов.

1.3 Таксономия задач Машинного Обучения
1.3.1 Сверхвизионное разделение: обучение с учителем, без учителя и с подкреплением

Таксономия задач в машинном обучении относится к классификации задач в соответствии с их характеристиками и типами обучения, которые они включают. Эта классификация помогает структурировать и понять различные типы задач, с которыми сталкиваются исследователи и практики машинного обучения. Она обычно основана на способе представления данных, наличии или отсутствии учителя и типе обратной связи, которую модель получает в процессе обучения.

В данном контексте три основных категории задач машинного обучения выделяются в свете их взаимодействия с данными:

Обучение с учителем (Supervised Learning)

Обучение с учителем (Supervised Learning) представляет собой один из основных типов задач в машинном обучении, при котором модель обучается на основе набора обучающих данных, где каждый пример данных сопровождается правильным ответом или меткой. Этот ответ обычно представляет собой целевую переменную, которую модель должна научиться предсказывать для новых данных. В основе обучения с учителем лежит идея "учителя", который предоставляет модели правильные ответы, по которым модель может корректировать свое поведение.

Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.

В случае регрессионных задач, также относящихся к обучению с учителем, модель обучается предсказывать непрерывную переменную на основе имеющихся данных. Например, модель может быть обучена предсказывать цену недвижимости на основе характеристик домов, таких как количество комнат, площадь и местоположение.

Одним из ключевых преимуществ

обучения с учителем является возможность получить точные предсказания для новых данных, если модель была правильно обучена на обучающем наборе данных. Однако важно обращать внимание на качество данных, правильное выбор признаков и модели, чтобы избежать переобучения или недообучения модели.

Давайте рассмотрим пример задачи классификации с использованием обучения с учителем: определение спама в электронных письмах.

Задача: Определить, является ли электронное письмо спамом или не спамом.

Обучающие данные: У нас есть набор обучающих данных, который состоит из множества электронных писем, каждое из которых имеет метку о том, является ли оно спамом или не спамом.

Признаки: Каждое письмо представлено набором признаков, таких как слова, фразы, частота встречаемости определенных слов или символов. Эти признаки могут быть представлены в виде векторов или числовых значений, например, с использованием метода "мешка слов" (bag of words).

Модель: Для решения задачи классификации мы можем использовать алгоритм, такой как наивный байесовский классификатор или метод опорных векторов. В данном случае, давайте выберем наивный байесовский классификатор.

Обучение модели: Мы обучаем наивный байесовский классификатор на обучающем наборе данных, подавая на вход признаки (тексты писем) и соответствующие метки (спам или не спам). Модель анализирует признаки и на основе обучающих данных учится определять, какие слова или фразы чаще встречаются в спамовых письмах, а какие – в нормальных.

Тестирование модели: После обучения модели мы можем протестировать ее на отдельном тестовом наборе данных, который не использовался в процессе обучения. Мы подаем электронные письма из тестового набора на вход модели, и она предсказывает, является ли каждое письмо спамом или не спамом.

Оценка модели: Мы оцениваем качество работы модели, сравнивая ее предсказания с известными правильными ответами из тестового набора данных. Мы можем использовать метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-мера, чтобы оценить производительность модели.

Применение модели: После успешного тестирования и оценки модели, мы можем использовать ее для автоматического определения спама в реальном времени для новых электронных писем, поступающих в почтовый ящик.

Рассомтрим пример простого кода на Python для решения задачи классификации спама в электронных письмах с использованием наивного байесовского классификатора и библиотеки scikit-learn:

```python

# Импорт необходимых библиотек

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# Подготовка обучающих данных

Поделиться:
Популярные книги

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Поющие в терновнике

Маккалоу Колин
Любовные романы:
современные любовные романы
9.56
рейтинг книги
Поющие в терновнике

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2

Сборник книг вселенной The Elder Scrolls

Bethesda softworks
Фантастика:
фэнтези
5.00
рейтинг книги
Сборник книг вселенной The Elder Scrolls

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Хозяйка расцветающего поместья

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Хозяйка расцветающего поместья

Попаданка 2

Ахминеева Нина
2. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 2

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Беовульф (Сборник)

Мартьянов Андрей Леонидович
Фантастика:
фэнтези
альтернативная история
5.75
рейтинг книги
Беовульф (Сборник)

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Тактик

Земляной Андрей Борисович
2. Офицер
Фантастика:
альтернативная история
7.70
рейтинг книги
Тактик