Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Помня об этом замечательном свойстве при анализе схем, содержащих резисторы, конденсаторы и индуктивности, вы всегда должны ответить на вопрос: как зависит выходное напряжение (его амплитуда и фаза) от входного напряжения в виде синусоидального сигнала определенной частоты. Этот вопрос важен и тогда, когда схема предназначена для другого режима работы. График результирующей амплитудно-частотной характеристики, отражающей отношение выходного сигнала к входному для каждого значения частоты синусоиды, полезен при анализе работы схемы со многими видами сигналов. Амплитудно-частотная характеристика (АЧХ), представленная на рис. 1.46, может принадлежать, например,
Рис. 1.46. Пример частотного анализа: выравнивание для громкоговорителя.
Под выходным сигналом в данном случае понимается звуковое давление, а не напряжение. Желательно, чтобы АЧХ репродуктора была «плоской», т. е. чтобы отношение звукового давления к частоте было постоянной величиной в диапазоне звуковых частот. В этом случае недостатки репродуктора можно скомпенсировать за счет пассивного фильтра с инверсной АЧХ (как показано на графике), включенного в усилитель радиоприемника.
Как мы увидим в дальнейшем, можно обобщить закон Ома, заменив понятие «сопротивление» понятием «полное сопротивление», или «импеданс», тогда он будет справедлив для любой схемы, в состав которой входят линейные пассивные элементы (резисторы, конденсаторы, индуктивности). Итак, понятия «импеданс» и «реактивное сопротивление» делают закон Ома справедливым для схем, содержащих конденсаторы и индуктивности. Уточним терминологию.
Импеданс — это обобщенное или полное сопротивление, индуктивности и конденсаторы обладают реактивным сопротивлением (можно сказать, что они реагируют на воздействие); резисторы обладают сопротивлением (по аналогии они оказывают сопротивление воздействию). Иными словами, импеданс = сопротивление + реактивное сопротивление (более подробно поговорим об этом позже).
Однако можно встретить, например, такое выражение: «импеданс конденсатора на данной частоте составляет…». Дело в том, что в импеданс входит реактивное сопротивление, и поэтому не обязательно говорить «реактивное сопротивление конденсатора», можно сказать и «импеданс конденсатора». На самом деле слово «импеданс» часто употребляют и тогда, когда известно, что речь идет о сопротивлении; например, говорят «импеданс источника» или «выходной импеданс», имея в виду эквивалентное сопротивление некоторого источника. То же самое относится и к «входному импедансу».
В дальнейшем речь пойдет о схемах, для питания которых используется синусоидальный сигнал с определенной частотой. Анализ схем, работающих с сигналами другой формы, требует большей тщательности и предполагает использование уже известных нам методов (например, метода дифференциальных уравнений или метода преобразования Фурье, при котором сигнал представляют в виде ряда синусоид). На практике эти методы редко используются.
1.18. Частотный анализ реактивных схем
Для начала рассмотрим конденсатор, на который подается синусоидальное напряжение источника питания (рис. 1.47).
Рис. 1.47.
Ток
I(t) = C(dU/dt) = C··U0·cos t.
Из этого уравнения следует, что ток имеет амплитуду I и опережает входное напряжение по фазе на 90°. Если не принимать во внимание соотношение фаз, то
I = U/(1/C).
(Напомним, что = 2f). Конденсатор ведет себя как резистор, сопротивление которого зависит от частоты и определяется выражением R = 1/C, и, кроме того, ток, протекающий через конденсатор, сдвинут по фазе на 90° относительно напряжения (рис. 1.48).
Рис. 1.48.
Например, через конденсатор емкостью 1 мкФ, подключенный к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц, будет протекать ток, эффективная амплитуда которого определяется следующим образом: I = 110/[1/(2·60·10– 6)] = 41,5 мА (эффективное значение).
Замечание: сейчас нам необходимо воспользоваться комплексными переменными; при желании вы можете пропустить математические выкладки, приводимые в последующих разделах, и принять на веру полученные результаты (они выделены в тексте). Не думайте, что подробные алгебраические преобразования, приводимые в этих разделах, необходимы для понимания всего остального материала книги. Это не так - глубокое знание математики похвально, но совсем не обязательно. Следующий раздел, пожалуй, наиболее труден для тех, у кого нет достаточной математической подготовки. Но пусть это вас не огорчает.
Определение напряжения и тока с помощью комплексных чисел. Только что вы убедились в том, что в цепи переменного тока, работающей с синусоидальным сигналом некоторой частоты, возможен сдвиг по фазе между напряжением и током. Тем не менее если схема содержит только линейные элементы (резисторы, конденсаторы, индуктивности), то амплитуда токов на всех участках схемы пропорциональна амплитуде питающего напряжения. В связи с этим можно попытаться найти некоторые общие выражения тока, напряжения и сопротивления и обобщить тем самым закон Ома.
Очевидно, что для того, чтобы определить ток в какой-либо точке схемы, недостаточно задать одно значение-дело в том, что ток характеризуется как амплитудой, так и сдвигом фазы.
Конечно, можно определять амплитуды и фазовые сдвиги напряжений и токов явно, например U(t) = 23,7·sin(377·t + 0,38), но оказывается, что проще это делать с помощью комплексных чисел. Вместо того чтобы тратить время и силы на сложение и вычитание синусоидальных функций, можно легко и просто складывать и вычитать комплексные числа. Так как действующие значения напряжения и тока представляют собой реальные количественные величины, изменяющиеся во времени, следует вывести правило для перевода реальных количественных величин в комплексное представление и наоборот. Напомним еще раз, что мы имеем дело с частотой синусоидального колебания , и сформулируем следующие правила: