Капля
Шрифт:
Обсудим сделанные наблюдения. Вот перечень вопросов, на которые надо ответить. Почему капли возникают? Почему, возникнув, они не «примерзают» к кристаллу, оставаясь неподвижными, а бегают по его поверхности? Почему за каплей и «положительный» и «отрицательный» шлейфы со временем расширяются? И еще одно «почему»: почему капля живет дольше, чем ей полагалось бы жить в соответствии с законом сохранения вещества? Неужели этот святой закон нарушается? Попытаемся ответить на эти вопросы, как говорят, в порядке их поступления.
Жидкая фаза — а капли жидкие! — является промежуточной между газообразной и кристаллической. И если кристалл
Обязательно надо помнить о том, что и в первом и во втором случае капли образуются на поверхности кристалла, вот-вот готового расплавиться. Это означает, что жидкость капель лишь незначительно переохлаждена. Ни капель, ни шлейфов за ними не было бы, если бы кристалл имел температуру существенно ниже температуры плавления; тогда атомы из паровой фазы падали бы на поверхность кристалла и «примерзали» к ней. Они смещались бы настолько мало, что их взаимные встречи, необходимые для образования капли, были бы практически исключены.
Почему же капли не «примерзают» к поверхности кристалла? Это, действительно, странно — ведь жидкость великолепно смачивает собственную твердую фазу. Помните рассказы о капле ментола, осушенной ментоловой иглой, и о первой капле талой воды, рожденной снегом? Капле на поверхности горячего кристалла полагалось бы растечься, а не оставаться сферической! Видимо, между жидкой каплей и поверхностью кристалла имеется тончайшая газовая прослойка, и капля существует на ней, будучи как бы подвешенной в воздухе.
И еще: появлению жидкой капли на поверхности испаряющегося или кристаллизующегося из газовой фазы кристалла паратолуидина могут способствовать пары воды в атмосфере, окружающей кристалл. С водой паратолуидин образует сплав, который становится жидким при температуре ниже 44 °С. Паратолуидиновой капле, содержащей немного воды, проще быть жидкой при температуре ниже 44° С, чем капле чистого паратолуидина.
На второй вопрос ответ получился некатегорическим, но вполне правдоподобным.
Теперь о расширении шлейфов. Вот здесь полная ясность. Расширяются они потому, что шлейф создается не только движущейся каплей, но и одиночными атомами, которые при росте кристалла оседают на боковых торцах положительного, а при испарении кристалла отрываются от боковых торцов отрицательного шлейфа. Чем дальше участок бокового торца шлейфа от движущейся капли, тем больше времени с ним взаимодействуют одиночные атомы и тем шире он.
Закон сохранения вещества в процессе создания каплей шлейфа, конечно же, не нарушается. Создавая положительный шлейф, капля живет дольше, чем можно было ожидать, по причине очевидной: она себя расходует на создание шлейфа, но при этом питается за счет тех атомов, которые оседают на ней из паровой фазы. Вопрос о законе сохранения
Капельный след
Английский ученый лауреат Нобелевской премии Чарлз Томас Рисс Вильсон всю свою долгую творческую жизнь посвятил исследованию капель. Ему было 25 лет, когда он впервые попал в обсерваторию на вершине снежной горы Бен-Невис в Шотландии. Там он наблюдал грозу: тяжелые облака, сверкающие молнии, грозовые разряды, вершина Бен-Невиса в ореоле разноцветных колец, движущихся и меняющих окраску. Потрясенный красотой и загадочностью виденного, Вильсон решает посвятить себя исследованиям в области физики атмосферных явлений. А это значит, что надо начинать с изучения капель, образующих облака.
В судьбе капель его интересовало все: как они зарождаются и растут, как испаряются, как меняются под влиянием различных внешних обстоятельств.
О творческом труде Вильсона, длившемся 65 лет, может быть, никто бы и не узнал, кроме метеорологов и узких специалистов по физике дождя и облаков, если бы в 1911 году он не создал прибор, в котором благодаря каплям можно сделать видимыми траектории элементарных заряженных частиц. Этому прибору — он называется камерой Вильсона — суждено было сыграть исключительную роль в развитии физики в XX веке.
Первые исследования Вильсона были посвящены изучению механизма зарождения капель. У него были талантливые и искусные предшественники. Английский физик Айткен еще в 1870 г. поставил опыты по образованию капель в изобретенной им туманной камере. Конструкция этой камеры элементарна: цилиндрический стеклянный стакан с легкоподвижным и тщательно притертым поршнем, на дне стакана слой воды, над водой под поршнем влажный воздух. При быстром поднятии поршня в стакане образуется туман из множества капелек. Возникают они по причине очевидной: при быстром расширении воздух немного охлаждается, так как для того, чтобы расшириться в пустой объем, освободившийся вследствие смещения поршня, воздуху надо потратить часть своей энергии. То количество влаги, которое до расширения насыщало воздух под поршнем, после расширения, когда воздух охладился, частично оказывается в избытке и выпадает в виде отдельных капелек, образуя туман. Айткен экспериментировал при очень небольших расширениях камеры и показал, что если воздух свободен от пыли или крупинок соли (их особенно много в атмосфере над поверхностью моря), то в момент расширения туман не возникает. Для его образования необходимы посторонние центры конденсации капель — «ядра Айткена».
Вильсон продолжил опыты Айткена, воспользовавшись его туманной камерой. Он экспериментировал много, тщательно, широко изменяя внешние условия, при которых капли могут или не могут зарождаться. Проследим шаг за шагом логику экспериментов Вильсона.
Шаг первый. Повторение опытов Айткена, сопровождаемое тщательным измерением коэффициента скачкообразного расширения камеры, т. е. отношения объема камеры после расширения к ее начальному объему ( К ) . Результат: Айткен прав до значений К <= 1,252.