Чтение онлайн

на главную - закладки

Жанры

Кинофантастика
Шрифт:

Какова масса Гаргантюа?

Тот факт, что планету Миллер, обращающуюся на орбите Гаргантюа, не уничтожают приливные силы черной дыры, позволяет довольно точно определить массу последней. Можно показать, что интенсивность приливного вытяжения обратно пропорциональна квадрату массы черной дыры. Иначе говоря, чем выше масса черной дыры, тем слабее приливные силы. С другой стороны, само существование планеты Миллер обеспечено ее гравитацией, сопротивляющейся приливным силам. Если бы вторые превзошли первую, планета развалилась бы. Так произошло с кометой Шумейкеров — Леви: в июле 1992 года ее раздавили приливные силы Юпитера, в который спустя два года врезались ее остатки.

Если считать плотность планеты Миллер близкой к плотности Земли, а высоту орбиты уподобить радиусу горизонта, то масса Гаргантюа составит не менее 200 млн солнечных масс. Цифра кажется колоссальной,

и она именно такова, если помнить, что «обычная» черная дыра имеет массу порядка нескольких солнечных. Черная звезда такого типа, называемого «звездным», обычно появляется после взрыва очень массивной звезды. Черная дыра в центре нашей Галактики, имеющая массу 4 млн солнц, — карлик по сравнению с дырой массой в 200 солнц. Но в центре некоторых активных галактик — например, Мессье 87 — обнаружены черные дыры, массы которых значительно превышают миллиард солнц! По сравнению с ними наш Гаргантюа — настоящий середнячок. Остается нерешенная проблема: такие сверхмассивные черные дыры находят пока что только в центре галактик…

Берегись, волна!

Хотя планета Миллер не гибнет от приливных сил Гаргантюа, она должна подвергаться вытягиванию по оси, соединяющей ее с черной дырой (и сжатию по перпендикулярной оси). В отличие от земных океанов, деформируемых лунными и солнечными приливными силами, но приподнимающимися на считаные метры, океанская масса планеты Миллер вздымается на добрый километр! Эта гигантская деформация не может не порождать одиночную волну, именуемую физиками солитоном. Ее впервые описал в 1834 году шотландский инженер Джон Скотт Рассел (1808–1882): он проследил на протяжении нескольких километров одиночную волну в канале, вызванную резким причаливанием судна. Его удивило, что, в отличие от обычных волн, солитоны обладают нетипичными параметрами пространственной локализации, а также постоянной скоростью и сохранением энергии: они перемещаются без рассредоточения в пространстве и без рассеивания во времени. Такие явления с разными причинами, как приливная волна «маскарет», цунами и «волна-предатель» — это солитоны, и «волна» на планете Миллер на них подозрительно похожа. При ее впечатляющих размерах остается удивляться, почему этот прилив не сопровождается катастрофическим оттоком вод там, где плавают исследователи. Заметим также, что раз происходит океанический прилив, значит должен происходить и континентальный: при высоком океаническом приливе происходит деформация земной коры на глубину 30 см. Силы земного прилива деформируют лунную поверхность на несколько метров вглубь, а приливные силы, порождаемые Юпитером, деформируют его спутник Ио метров на сто. Рассеивание энергии от вызванного этим трения приводит к сильной вулканической активности, из-за чего Ио — единственное (кроме Земли) место с действующими вулканами. При бушующих на планете Миллер приливных силах над ее водами должны были бы вздыматься огромные вулканы…

Есть и другие следствия приливных сил. Подобно Луне и Ио, планета Миллер должна вращаться вокруг своей оси примерно в том же ритме, в каком движется по орбите. Иными словами, она всегда должна быть обращена к черной дыре одной и той же стороной. Такая синхронизация обращения и вращения проистекает из явления замедления приливных сил. Когда Луна вращалась быстрее, чем сейчас, вызываемая земным приливом деформация двигалась в ритме этого вращения, приводя к трению внутри грунта спутника, и вызванное этим рассеивание энергии замедляло вращение Луны. Это торможение продолжалось до тех пор, пока не исчезла причина трения, то есть пока Луна не стала вращаться так медленно, чтобы все время оставаться одной стороной к нам. То же самое происходит на Земле, где трение водной массы об океанское дно приводит к торможению ее периода вращения на 2 миллисекунды за столетие. Это же должно происходить на планете Миллер, но с одной оговоркой: если бы ее вращение и обращение были полностью синхронизированы, то океанический вал должен был бы зафиксироваться по отношению к планете, так как обращался бы в ритме обращения планеты вокруг черной дыры, а этот ритм аналогичен вращению планеты вокруг своей оси. Однако, как видят действующие лица, приливная волна вздымается примерно раз в час. Это значит, что обращение и вращение планеты еще не вполне синхронны и что она колеблется вокруг среднего положения с периодом примерно в час, отделяющий один прилив от другого.

Вывод: планета Миллер находится на этой орбите не так давно, ведь с учетом приливных сил Гаргантюа синхронизация вращения и обращения должна быть быстрой.

Разница во времени

Интрига в фильме «Интерстеллар» опирается на странную ситуацию: один час на планете Миллер соответствует семи годам на большом удалении от нее[22].

Это огромное расхождение — одно из следствий общей относительности: часы в поле сильного тяготения отстают от таких же часов в поле более слабого тяготения. Точнее, если синхронизировать двое одинаковых часов, поместить одни в более сильное гравитационное поле, а потом поставить их рядом с другими, то выяснится, что первые отстанут от вторых, причем тем больше, чем сильнее то самое гравитационное поле и чем дольше они в нем находились.

Экспериментальное подтверждение этого предсказания общей теории относительности было сделано в 1960 году американскими физиками Робертом Паундом и Гленом Ребкой, сравнившими частоты излучения ядер идентичных атомов, помещенных у подножия и на вершине 20-метровой башни Гарвардского университета[23]. Сегодня необходимо учитывать это явление для правильной работы системы спутникового обнаружения, так как временная разница между земной поверхностью и спутниками GPS (системы глобального позиционирования) на орбите высотой 20 тыс. км составляет 46 миллионных долей секунды в час. Если не принимать это обстоятельство во внимание, то погрешность позиционирования может достигнуть 13 км в день!

Отметим также, что разница во времени между планетой Миллер и дальним космосом должна сопровождаться огромным отклонением в сторону низких частот у радиоволн, испускаемых сброшенным на планету аварийным зондом, при их приеме на Земле. Эту разницу, похожую на уже упомянутый релятивистский эффект Доплера, можно уподобить потере энергии света, выходящего из «гравитационного колодца», обусловленного черной дырой[24]. Сомнительно, чтобы ученые в фильме могли этого не знать, и с этой точки зрения в их удивление попаданием зонда в сильное гравитационное поле трудно поверить. Наблюдаемое расхождение волн должно было бы указать им на силу гравитационного поля, в котором находится планета.

Эффект временного расхождения между планетой Миллер и кораблем «Эндюранс», находящимся на удаленной орбите, реален. Можно ли вывести из него расстояние между планетой и черной дырой? Ответ: можно! Но есть проблема: если Гаргантюа — это черная дыра Шварцшильда, то планета Миллер должна находиться очень близко к его горизонту, всего в одной миллиардной его радиуса, что, учитывая массу Гаргантюа, равно сотне метров. В фильме это явно не так. Для объяснения резкого расхождения во времени с планетой Миллер необходимо, чтобы Гаргантюа вращалась, причем быстро…

Космическая воронка

Для описания черной дыры достаточно трех параметров: ее массы, кинетического момента — количества ее вращательного движения — и электрического заряда (его мы здесь не учитываем). Простота решения Шварцшильда объясняется тем, что в нем подразумевается черная дыра без вращения и без электрического заряда. Но, подобно звезде или галактике, черная дыра может вращаться вокруг собственной оси; соответствующее этому состоянию решение уравнений Эйнштейна предложено новозеландским математиком Роем Керром. Не приходится удивляться тому, что вращающаяся черная дыра ведет себя вовсе не как волчок, ведь она вовлекает в свое вращение пространство-время![25] Соседнее с ней пространство-время неумолимо втягивается во вращение, и получается подобие воронки, образующейся при спуске воды из ванны. Вода движется по спирали, разлагающейся на два движения: круговое, вокруг стока, и радиальное, к стоку.

Представим себе моторную лодку, оказавшуюся вблизи такого водоворота; предположим, ее мотор позволяет развивать в воде скорость не более 20 км/ч. Вдали от водоворота, в относительно спокойной воде, лодочник может маневрировать, как хочет, потому что мотор легко преодолевает медленное движение к водовороту. Поэтому лодочник способен стабилизировать лодку мотором, не бросая якорь, немного приближаться к водовороту, отплывать от него, даже идти против течения. Приближаясь к центру водоворота, он в конце концов попадет в область, где круговая скорость потока будет равна максимальной скорости лодки. Преодолев это критическое расстояние, лодка уже не сможет сохранять неподвижность, преодолевая движение воды, даже с работающим на всю катушку мотором: ее неудержимо закрутит в направлении вращения воронки. Возможности маневрирования сократятся, направления движения будут задаваться направлением воронки внутри периметра, тем более узкого, чем выше скорость водоворота. Обычно лодочник справляется с этой сложной ситуацией, направляя лодку по выходной спирали, то есть удаляясь от центра. Если лодка окажется еще ближе к центру воронки, то настанет момент, когда радиальная скорость потока тоже достигнет 20 км/ч — максимальной скорости самой лодки. Вот тут начнутся серьезные неприятности: возможность плыть настолько сократится, что лодке останется одно — угодить в пасть водоворота и там развалиться.

Поделиться:
Популярные книги

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Не лечи мне мозги, МАГ!

Ордина Ирина
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.00
рейтинг книги
Не лечи мне мозги, МАГ!

У врага за пазухой

Коваленко Марья Сергеевна
5. Оголенные чувства
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
У врага за пазухой

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита