Кинофантастика
Шрифт:
Важность такого кресла-самолета объясняется тем, что невесомость в космическом вакууме полностью меняет способ перемещения. Зачем земным средствам транспорта — автомобилям, поездам, кораблям, самолетам — двигатель? Для перемещения, скажете вы. Верно, но не только: еще — и это главное — для преодоления силы трения — в воздухе ли, на дорожном ли полотне, — сопротивляющейся движению после начального ускорения. Если выключить мотор, силы трения возобладают, машина станет замедлять ход и остановится. В космическом вакууме никакое трение не препятствует движению. Малейшее приложение силы порождает неостановимое движение! Неверный маневр при перемещении астронавта вдоль МКС может отправить его в смертельный дрейф, если он не пристегнут ремнем безопасности (как и происходит в начале фильма). Из-за той же самой инерции Стоун не может прекратить вращение вокруг своей оси, начавшееся после того, как героиню выбросило из челнока «Эксплорер» при столкновении с облаком обломков. Если вы начнете движение в космосе, вас ничто не остановит… Поэтому автономное перемещение в космическом пространстве требует какой-то «опоры». На практике в космическом кресле применены «огнетушители» —
Жизнь висит на волоске
После того как командир спас астронавтку Стоун, оба героя добираются до МКС и отчаянно пытаются за нее зацепиться, чтобы прекратить движение, потому что в MMU у Ковальски закончился газ. Стоун, на свое счастье, запутывается ногами в стропах пристыкованного к МКС модуля «Союз», и это останавливает ее движение. Она ловко хватает Ковальски за руку и не дает ему уплыть в пустоту. При этом стропы остаются натянутыми, как будто Ковальски тащит в сторону непреодолимая сила. Она и заставляет его пожертвовать собой, выпустив руку Стоун. Его отбрасывает прочь, отчего стропы обвисают, и его самоубийство спасает Стоун жизнь. Эта сцена — классика кино: герои до последнего мгновения держатся за руки, вися над пропастью. Если разжать хватку, то несчастный рухнет вниз, неумолимо увлекаемый земным притяжением. Но в космосе герои, неподвижные по отношению к МКС и находящиеся поэтому на одной с ней орбите, могли бы преспокойно перестать держаться за руки и вернуться по стропам, просто держась за них, чтобы не отцепиться. Притягиваемые Землей, они обладают достаточной скоростью — это орбитальная скорость МКС, — чтобы вечно мимо нее промахиваться! Поэтому вся сцена — вопиющая ошибка, если считать, конечно, что МКС и астронавты пребывают в невесомости, то есть в свободном падении на Землю под действием собственного веса. Правда, у режиссера могут быть смягчающие обстоятельства. Дело в том, что космическая станция тоже подвергается действию силы трения ввиду наличия на высоте 400 км остаточной атмосферы. Эту силу, пусть и малую, нельзя полностью игнорировать, так как она приводит к уменьшению высоты полета МКС, теряющей на каждом витке, как уже говорилось, несколько метров. Точное значение этой потери высоты зависит от ориентации солнечных панелей: ее можно свести к минимуму сворачиванием этих панелей, когда они не используются (в тени Земли), или, наоборот, довести до максимума, если МКС нужно опустить. Подсчеты показывают, что лобовое сопротивление, испытываемое МКС, составляет порядка нескольких ньютонов, то есть оно меньше натяжения стропы, на которой висит (на Земле) груз в 1 кг. Таким образом, натяжение стропы можно считать следствием силы лобового сопротивления в атмосфере: все происходит так, как если бы МКС была большим парусом, который ловит слабенький ветерок, дующий в атмосфере на такой высоте. Вот только силы, сообщаемой этим парусом, совершенно недостаточно, чтобы Ковальски был вынужден разжать пальцы…
Рандеву на орбите
В фильме нет отрицательного героя, эта роль отдана законам физики, управляющим орбитальной механикой. С ними и ведет постоянную борьбу Стоун, перебирающаяся со станции на станцию. Ее трудности проистекают из того обстоятельства, что преследование в космосе — совсем не то же самое, что преследование в автомобиле внизу, на Земле. Во втором случае для поимки объекта преследования достаточно разогнаться быстрее него. В космосе наращивание скорости с целью достижения намеченной отметки приводит к неожиданным последствиям, так как на движущиеся объекты воздействует также земное притяжение. Для успеха космического рандеву мало попасть в нужный момент в нужное место, требуется обладать еще и нужной скоростью. Вспомним, что для поддержания определенной орбиты объект должен иметь высокую скорость и что две разные орбиты — это и две разные скорости (скорость уменьшается с сокращением радиуса орбиты). Изменение скорости немедленно приводит к изменению орбиты! Поэтому настигнуть спутник, летящий на одной с вами орбите, чрезвычайно трудно. Привычный образ мыслей побуждает нас и здесь действовать, как на шоссе: спутник и я движемся с одной скоростью, так как находимся на одной орбите. Я ускорюсь и поймаю его!
Что тут не так? Все! Устремляясь к цели, вы увеличиваете свою суммарную энергию и вылетаете на более удаленную от Земли орбиту, уменьшив этим свою орбитальную скорость! И наоборот, направившись в противоположную цели сторону и уменьшив свою суммарную энергию, вы переходите на более близкую к Земле орбиту и увеличиваете свою орбитальную скорость. Вы никогда не достигнете одного и того же места, двигаясь с одной и той же скоростью. Если два объекта находятся на разных орбитах, то задача все равно остается сложной, но уже ближе к осуществлению! Поскольку скорость на орбите зависит от радиуса орбиты, предметы на разных высотах движутся с разными скоростями. Трудность в том, что для перехода с орбиты на орбиту нужно добавлять или сбрасывать сотни, а то и тысячи километров в час, причем проделывать это в строго определенный момент. К тому же орбиты могут быть наклонены друг к другу, что заставляет корректировать также и направление своего движения. В действительности космический телескоп и МКС имеют совершенно разные орбиты: телескоп летит на 200 км выше станции, и его орбита наклонена на 28,5° к плоскости экватора, тогда как наклон орбиты МКС — 51,6°. Быстрое вычисление показывает, что скорость телескопа на 450 км в час меньше. Та же
Возвращение в атмосферу
Добравшись все-таки до китайской станции и устроившись в ее спасательной капсуле, Стоун падает на Землю. Поверхность капсулы раскаляется докрасна из-за аэродинамического трения. Даже при слабой плотности верхних слоев атмосферы это трение очень существенно, так как скорость вхождения капсулы в атмосферу примерно равна ее скорости на орбите, составляя порядка 28 тыс. км/ч. Температура наружных деталей может достигать 2000 °C, поэтому капсула должна иметь термический щит. Эта защита совершенно необходима, как показывает взрыв челнока «Колумбия» при возвращении на Землю 1 февраля 2003 года из-за повреждения его термозащиты еще при старте. Трение в атмосфере приводит к торможению капсулы, падение которой перестает быть свободным, то есть под воздействием одной гравитации. Это замедление может достигать высоких величин и в несколько раз превысить земное притяжение, создавая внутри капсулы искусственное тяготение. При этом в фильме шлем от скафандра Стоун продолжает плавать по кабине, как на орбите! Эта ошибка тем удивительнее, что замедление в фазе вхождения в атмосферу и его воздействие на астронавтов достоверно показаны в других фильмах. Уже после съемок пришлось приложить старания, чтобы добавить плавающий шлем в сцене, где правильнее было бы без этого обойтись. Можно было бы неплохо сэкономить, просто дав создателям фильма кое-какие советы из области физики…
Оборвем в этом месте анализ, хотя обсуждения достойны и многие другие научные и технические аспекты фильма, отдельные из которых, например пожар на МКС, производят сильное впечатление. Альфонсо Куарон очень стремился к реалистичности, особенно удачно у него получились космические виды. Например, даже звездное скопление Плеяды, созвездия Тельца и Орион показаны в его картине правильно! Отметим также, что она завершается обзором эволюции жизни на Земле, адресованным, вероятно, американским поборникам теории креационизма… Как, разве вы не заметили? Вынырнув из озера, куда рухнула капсула, Стоун с трудом выползает на берег, еле-еле выпрямляется и гордо, даже, можно сказать, с вызовом смотрит в небеса!
В конечном счете кинокартина «Гравитация» при всех огрехах сценария производит великолепное визуальное впечатление. Но, как вы догадались, его создателей интересовало другое: благодаря им у нас появился отличный предлог поговорить об орбитальной физике!
Благодарность
Выражаем благодарность Кристофу Бонналю из Национального центра космических исследований (Франция) за ценные сведения о космическом мусоре и о несчастных случаях в космосе.
Что почитать и посмотреть
• Полетом при g = 0 можно полюбоваться по адресу: https://www.youtube.com/watch?v=lVTTpKShVtE.
• Опыт Дэвида Скотта с падением предметов в экспедиции «Аполлона-15» выложен по адресу: https://www.youtube.com/watch?v=03SPBXALJZI.
Глава 3.
«Интерстеллар»: прогулка в черной дыре
На Земле разразилась страшная экологическая катастрофа, планета умирает, на ней бушуют ураганные ветры и пыльные бури[16]. Падают урожаи, не хватает еды… В условиях недостатка ресурсов человечество агонизирует. Группа ученых-затворников (НАСА!), ища выход, отправляет маленькую экспедицию в космос, на поиски новой Земли. Скитаясь по экзотическим планетам, герой в конце концов попадает в черную дыру, чтобы научить нас той истине, что пространству и времени неподвластна одна любовь…
Притом что «Интерстеллар» (Кристофер Нолан, 2014) не слишком цепляет зрительское внимание, этот фильм, заявляющий о своей преемственности с «Космической одиссеей 2001 года», представляет немалый педагогический интерес ввиду неоспоримой научной серьезности действия и добросовестности режиссера[17]. Правда, он подправил некоторые эпизоды — особенно те, где фигурирует черная дыра, — в ущерб научной точности: «в Голливуде даже черные дыры прихорашиваются», как сострил по этому поводу британский журнал «Нью сайентист». В итоге многие научные моменты фильма не могут не вызвать у зрителя недоверие[18]. Мы не станем задерживаться на этих подробностях, а поговорим о науке, чтобы привести кое-какие сведения, никак не вытекающие из некоторых сцен в фильме. Сосредоточимся на черной дыре Гаргантюа и на ее влиянии на окружающее пространство, что составляет сердцевину интриги. Итак, пристегните ремни: отправляемся к черной дыре!