Кошки и гены
Шрифт:
Итак, после окончания транскрипции молекулы информационной РНК подвергаются «редактированию». Специальные ферменты удаляют из них незначимые участки Синтроны"), сшивают друг с другом значащие райойы ("экзоны"), приделывают к такой перекроенной молекуле шапочку и хвост. Шапочка эта нужна для установления контакта с рибосомой, а хвост защищает смысловую часть молекулы от разрушения. В таком виде молекула иРНК yxoflHt из ядра в цитоплазму клетки, где и служит матрицей для синтеза белка.
Есть две компании клеточных «редакторов». Об одной из них я только что рассказал вам. Она работает над редактированием РНК. Есть и другая компания, которая занимается редактированием, а вернее,
Чем отличается редактор от корректора? Редактор вникает в смысл текста. Корректор в смысл вникать не обязан, его задача —
борьба с опечатками.
От опечаток не гарантирован ни один процесс тиражирования информации. Репликация — удвоение ДНК — в этом смысле исключением не является. В процессе тиражирования ДНК — построения комплементарной копии на одной из нитей ДНК — редко, очень редко, но, все же, случаются опечатки.
Это может быть и замена одного азотистого основания на другое, и потеря фрагмента, и вставка лишнего куска молекулы, и разворот фрагмента, и перенос его с одной молекулы на другую. Такие события — опечатки в генетических текстах — называются мутациями.
Если эти события приводят к грубым изменениям формы молекулы, они привлекают внимание клеточных «корректоров»
ферментов репарации. Эти ферменты поступают просто: они вырезают участок в одной из двух нитей в двойной спирали ДНК, вновь застраивают его согласно информации, записанной на второй, неповрежденной нити ДНК, и сшивают концы встроенного фрагмента со свободными концами корректируемой молекулы.
Постоянная бдительность клеточных корректоров обеспечивает поразительную точность тиражирования ДНК, недостижимую в издательском процессе. Но у них есть один недостаток: они устраняют только те ошибки, которые грубо меняют форму молекулы. Если же ошибка никак не сказывается на этом параметре, она не будет замечена и исправлена ферментами репарации.
Гены, несущие такие, негрубые, с точки зрения клеточных корректоров, ошибки, затем сами будут реплицироваться, их дочерние копии будут еще раз копироваться, размножая ошибку
мутацию — в бесчисленном множестве экземпляров.
В тех клетках, где по законам развития происходит считывание информации с данного гена, измененные последовательности будут транскрибированы в молекулы РНК. Эти РНК будут, конечно, отличаться от тех, что считываются с неизмененного мутацией гена. Соответственно на этой, отличной от нормы, матрице РНК будет затем построена измененная белковая молекула. В ней может быть встроена иная, чем в норме, аминокислота, или потеряна часть аминокислот, или их последовательность будет перевернута. Очень высока вероятность того, что такая структурно измененная белковая молекула изменит и свою функцию. Это может привести к тому, что окажется измененным и признак, в формировании которого участвует молекула.
Вот так по цепочке распространяется эффект изменений в молекуле ДНК: от гена к признаку. Молекулярное изменение гена превращается в изменение организма, созданного по ошибочному рецепту. Последствия зависят от того, насколько серьезной была ошибка.
Если вы, готовя торт, вместо вишневого варенья добавите клубничное, это будет уже другой торт, либо более, либо менее вкусный, чем тот, что пекся по стандартному рецепту. Но если вы вместо вишневого варенья положите горчицу, боюсь, что он б!удет совсем несъедобным и вам придется его выбросить. Так и с мутациями. Может возникнуть организм, отличающийся от исходного в лучшую или худшую сторону, но может возникнуть и совершенно нежизнеспособное создание.
Теперь давайте вернемся к тому примеру, с которого мы начали свои рассуждения.
Дело в том, что в ходе эволюции еще на самых ранних ее стадиях возникло очень важное приспособление, позволяющее организмам защититься, застраховаться от вредного действия мутаций: все многоклеточные организмы имеют каждый из своих генов в двух экземплярах.
Отдельные экземпляры называются аллелями. Мутации ведут к возникновению новых вариантов генов — новых аллелей.
Одинарный набор всех генов организма мы будем дальше называть гаплоидным геномом, а двойной — диплоидным.
В чем преимущества диплоидности, дублирования всех генов? В обеспечении большей надежности системы. Не зря говорят: «Ум хорошо, а два лучше». Вот, например, мой ум может ошибиться в том или ином вопросе, но тогда другой ум, редакторский, эту ошибку исправит. В принципе, наверное, может быть, и наоборот. Но в моей практике такого не случалось. Если в одном аллеле записана ошибочная информация и это приводит к синтезу дефектного белка, то другой аллель содержит правильную информацию и контролирует синтез нормального белка.
Клетку или организм, который содержит два разных аллеля одного гена, будем называть гетерозиготой, два одинаковых (оба мутантные или оба нормальные) — гомозиготой.
Каков будет результат наличия в клетке двух форм ферментов? Здесь что-либо предсказать заранее трудно. Может быть так, что того количества нормального белка, которое есть у гетерозиготы, достаточно, чтобы катализировать зависимый от него метаболический процесс. Тогда организм будет иметь такое же проявление признака, какое характерно для гомозиготы по нормальному аллелю.
Аллели, которые в гетерозиготе (будучи в одном экземпляре) дают то же проявление признака, что и в гомозиготе, называются доминантными.
Аллели, которые проявляют свое действие только в гомозиготе, а в гетерозиготе незаметны, ибо подавляются действием другого, доминантного аллеля, называются рецессивными.
Как правило, нормальные аллели доминируют над мутантными. Но из этого правила есть множество исключений, с которыми мы с вами дальше познакомимся.
Теперь, введя эти определения, давайте рассмотрим эффекты взаимодействия аллелей на молекулярном уровне. Если один из аллелей производит дефектный, неработающий фермент, то активности фермента, синтезированного по рецепту, считанному со второго аллеля, может не хватить для полноценного обеспечения того метаболического процесса, за который эти ферменты отвечают. Тогда у гетерозиготы исследуемый признак будет проявляться слабее, чем у гомозиготы по нормальному аллелю, но сильнее, чем у гомозиготы по мутантному. Такое тоже встречается. Тогда оба аллеля называются полудоминантными.
Вы знаете, что вещества, поступающие в клетку, претерпевают целый ряд последовательных превращений до того, как станут готовым продуктом. В том же синтезе пигмента окраски шерсти меланина участвует не одна тирозиназа, а несколько разных ферментов. В генах, кодирующих любой из этих ферментов, могут возникать мутации.
Рассмотрим начальный и конечный этапы этого процесса. Вначале происходит превращение тирозина в промежуточный продукт. В конце, когда пигмент уже готов, важно равномерно распределить его по волосу.