Кошки и гены
Шрифт:
Довольно любопытно было бы узнать, в какой хромосоме и в каком участке ее находится тот или иной ген. Оставим пока в стороне вопрос, зачем нам это знать. (Я вообще считаю этот вопрос глупым. Что значит, зачем знать? Затем, что это неизвестно!]. Разберемся сначала с тем, как это можно узнать.
По распределению полос вы можете легко опознать конкретные хромосомы в гибридных клетках. Например, в клеточных гибридах хомяка с кошкой. Нет, конечно, кошку с хомяком никто не скрещивал. Речь идет именно о клеточных гибридах. Как их получить? Нужно взять культуры фибробластов (активно делящихся клеток соединительной ткани) обоих видов и смешать их. Существуют методы, облегчающие слияние этих клеток друг с другом. Из этого слияния и получаются гибриды клеток, содержащие хромосомы обоих видов: кошки и хомяка. В процессе клеточных делений при культивировании
Что это дает для решения задачи картирования? Допустим, мы обнаружили, что в гибридном клоне №1232 (клоном мы называем группу клеток, которая возникла в результате деления одной- единственной клетки) утеряна Л1-хромосома кошки. Проведя биохимический анализ клеток этого клона, мы установили, что в них присутствует только хомячий вариант фермента эстеразы D, а кошачий утерян. Тогда логично сделать вывод, что именно в Al- хромосоме локализован ген, кодирующий структуру этого фермента.
В последнее время получил распространение и другой подход к картированию. Были выделены или искусственно синтезированы фрагменты ДНК, соответствующие тем или иным генам. Показано, что гены, выполняющие одинаковые функции у разных видов, имеют идентичную или чрезвычайно сходную последовательность оснований в ДНК. Такие гены называют гомологичными. Как можно проверить гомологию двух фрагментов ДНК? Довольно просто. Нам не нужно расшифровывать последовательность каждого' из них. Если последовательности гомологичны, то они в подходящих условиях будут гибридизоваться друг с другом: образовывать двойную спираль гибридной молекулы ДНК. Более того, оказалось, что эти фрагменты могут гибридизоваться и с гомологичными участками ДНК в фиксированных хромосомах прямо на предметном стекле. Именно на этой особенности базируется метод картирования хромосом гибридизацией с генами, мечеными радиоактивными изотопами.
Хромосомные карты домашней кошки.
Слева — схемы хромосом кошки, справа — списки генов, для которых определено место их локализации на хромосомах.
Пусть у нас есть человеческий ген, например, коллагена. Мы метим его изотопом водорода - тритием, и затем наносим на препарат фиксированных хромосом кошки. Этот фрагмент ДНК будет преимущественно гибридизоваться с теми районами ДНК кошки, где находятся гомологичные последовательности. По засвечиванию фотоэмульсии над местом связывания нашего меченого фрагмента мы можем картировать интересующий нас ген в совершенно определенном районе совершенно определенной хромосомы кошки.
В последние годы метод картирования генов, основанный на гибридизации фрагментов ДНК с ДНК хромосом, получил очень широкое распространение. Только вот радиоактивными изотопами для этого уже практически не пользуются. Их заменили безопасные и гораздо более красивые флуоресцентные метки. Фотографии препаратов хромосом, полученных с использованием флуоресцентных красителей, можно увидеть на сайте Института цитологии и генетики СО РАН http://www.bionet.nsc.ru/microscopy/pages/photos.html
С помощью этих и других методов на сегодняшний день Савгуст 2008) на генетической карте кошке локализовано 1793 гена. Показать их на одном рисунке абсолютно невозможно. Если вас интересует положение того или иного гена, вы можете найти его в базе данныхпо генам кошки по адресу
Хромосомная организация наследственного материала обеспечивает его точную передачу от материнских клеток дочерним. Как вы помните, каждая из нитей ДНК достраивает себе комплементарную копию. В результате из одной «двойной молекулы ДНК образуются две двойных. Каждая из них отдельно одевается в белковые одежды.
При делении клеток тела — соматических клеток — происходит точное распределение дочерних хромосом по дочерним клеткам, так что каждая сестринская клетка получает по одной из сестринских хромосом. Этот процесс, который называется митозом, обеспечивает полную идентичность генетической информации во всех соматических клетках одной особи.
В процессе формирования половых клеток (в мейозе) происходит не одно, а два деления удвоенных хромосом. В ходе подготовки к первому делению гомологичные
После завершения кроссинговера наступает первое деление мейоза, в ходе которого, в отличие от митоза, в дочерние клетки расходятся не сестринские, а гомологичные хромосомы. Между первым и вторым делением мейоза удвоения ДНК (и, следовательно, хромосом) не происходит. Во втором делении мейоза в дочерние клетки расходятся уже сестринские хромосомы. Благодаря такой организации мейоза, сформированные половые клетки — гаметы — получают гаплоидный, одинарный, набор хромосом.
Каждая из гомологичных хромосом и, значит, каждый из аллельных генов находится в половой клетке не в двух, а в одном- единственном экземпляре. Диплоидность вновь восстанавливается после оплодотворения. Оплодотворенная яйцеклетка содержит уже диплоидный набор генов и хромосом и будет в ходе митотических делений передавать всем соматическим клеткам совершенно одинаковый набор наследственных инструкций, по которым и будут строиться тело и душа вновь возникающего организма.
Случайное расхождение гомологичных хромосом при первом делении мейоза имеет глубокий биологический смысл.
Все половые клетки самок несут Х-хромосому, половина половых клеток самца — Х-, половина Y-хромосому, Объединение XX дает самку, XY — самца.
Рассмотрим, например, расхождение половых хромосом. Вы помните, что у самцов они разные, X и Y, а у самок одинаковые - обе X. Но и у самцов, и у самок половые хромосомы объединяются друг с другом в ходе подготовки к первому делению мейоза, а затем расходятся обязательно в разные дочерние клетки. В результате все половые клетки самки — яйцеклетки — несут по одной Х-хромосоме. У самцов половина сперматозоидов содержит Х-хромосому, а половина — К-хромосому. При оплодотворении происходит слияние половых клеток самца и самки. Оплодотворенная яйцеклетка называется зиготой. В результате в половине случаев X встречается с Л’, а в другой половине X встречается с К В первом случае зигота даст начало самке, во втором — самцу.
Однако, как и процесс копирования информации, процесс
расхождения хромосом иногда дает сбои. В одну из дочерних клеток в первом делении мейоза отходит не один из гомологов, а оба. В другую дочернюю клетку в таком случае не попадает ни одного. При встрече такой клетки, имеющей или избыточное, или недостаточное количество хромосом (и, следовательно, генов), с нормальной гаметой противоположного пола формируется зигота также с избыточным или недостаточным хромосомным набором.
Это довольно серьезное нарушение, которое, как правило, плохо сказывается на развитии. Известное врожденное заболевание у человека — синдром Дауна — обусловлено именно такого рода нарушением расхождения хромосом. Дети, страдающие этим заболеванием, имеют еще одну 21-ю хромосому.
К дефектам развития приводят и нарушения в расхождении половых хромосом. В норме все люди имеют 46 хромосом. Из них 2 хромосомы относятся к половым. Иногда из-за нарушения в расхождении хромосом в процессе созревания половых клеток рождаются мужчины с хромосомным набором не ХУ, a ХХУ. Такая хромосомная конституция приводит к группе нарушений, которая называется синдромом Кляйнфельтера. Мужчины, имеющие добавочную Х-хромосому, как правило, стерильны и имеют измененное поведение.
Аналогичное нарушение наблюдается изредка и у котов. Его можно установить по внешнему виду кота, если его мать или отец имели рыжую окраску шерсти. Дело в том, что ген рыжей окраски локализован в Х-хромосоме, Поскольку У-хромосома не имеет гомологичного гена, то мутация у котов проявляется полностью, и они оказываются рыжими. Если у самки в одной из Х-хромосом находится мутантный ген, а в другой — его нормальный вариант, то рыжая окраска проявляется не полностью, не на всей поверхности шкурки, а частично, пятнами. Такая окраска называется черепаховой. Более подробно мы будем разбирать наследование рыжей окраски в следующей главе. Сейчас же нас этот ген интересует только как маркер Х-хромосомы.