Чтение онлайн

на главную - закладки

Жанры

Лабиринты мышления или учеными не рождаются
Шрифт:

И здесь мы «торжественно провозглашаем» и «клянемся», что с этого момента для отображения родовидовых и перекрестных соот-, ношений мы будем применять в подавляющем большинстве случаев овалы. А если придется применить своеобразные по форме фигуры, то все углы пусть будут скругленными, или вообще углов не будет, как в приведенной для примера фигуре на рис. 88.

Рис. 88

Выше мы сказали о рис. 50, что этот пример может показаться «невероятно усложненным» после явно простых схем, приводимых до этого материала.

Но это еще не все. Впереди — еще более сложные, «ошарашивающие» логико–графические схемы с родовидовыми

и перекрестными соотношениями.

Адо того, как «ошарашить» ими читателей, еще раз провозгласим, что родовидовые, перекрестные и внеположные (с их вариантами) соотношения понятий лежат в структуре любой классификации. Так что игровая и чуть игривая таблица с классификацией автомобилей (рис. 50) здесь тоже иллюстрация. Но на самом деле (такова уж научная жизнь) классификационные соотношения понятий часто гораздо сложнее. В этом мы убедимся, когда перейдем к составлению реалистичных схем.

Возьмем геометрию. И для начала не такую уж каверзную проблему.

Как соотносятся понятия: четырехугольник, прямоугольник, квадрат, ромб, параллелограмм, трапеция? Отличники и даже их учителя математики в школе, при том, что они знают теоремы и решают на их основе задачи, обычно не задумываются об этой классификационной проблеме.

Подождите, не заглядывайте в приготовленную нами схему (рис. 100) и попытайтесь прикинуть на бумаге свой вариант в соответствии с теми правилами построения схем, которые мы уже знаем.

Что–то получилось… Скорее всего, то же, что и у большинства людей, с которыми мы занимались. Это «что–то» не вполне совпадет с окончательным «продуктом». Для нас рис. 100 — окончательный продукт потому, что мы его получили в конце концов совместно с учениками школ, учителями математики и просто с тренирующимися в л огико–графическом структурировании людьми. Получили в процессе некоторых творческих мук… Ну, может быть, у вас и сразу совпадет. Ребята из физико–технического университета почти мгновенно давали такую же схему. Ну а если не вполне совпало, то давайте построим ее теперь последовательно и вместе.

Итак, еще раз выпишем, но теперь в столбик, понятия, соотношения которых друг с другом надо нарисовать: четырехугольник, прямоугольник, квадрат, ромб, параллелограмм, трапеция.

Как учил Аристотель и как принято в логике, возьмем каждое из этих понятий в кружочек, сделаем из них фигуры–понятия (см. рис. 89).

Рис. 89

Теперь шаг за шагом выясним соотношение каждого понятия с каждым понятием.

Квадрат — это вид ромба (см. рис. 90).

Рис. 90

Квадрат — это вид прямоугольника (см. рис. 91).

Рис. 91

Прямоугольник — это вид параллелограмма (см. рис. 92).

Рис. 92

Ромб — это вид параллелограмма (см. рис. 93).

Рис. 93

Ромб и прямоугольник — понятия перекрещивающиеся (см. рис. 94).

Рис. 94

Квадрат — это вид прямоугольника с равными сторонами.

И одновременно квадрат — это вид ромба. Ведь квадрат — это ромб с прямыми углами. Поэтому квадрат помещаем в перекрестье прямоугольника и ромба. При этом понятие «квадрат» берем в отдельный овал. Здесь, как видим, из трех простых схем мы делаем одну сложную, в которой показано соотношение понятий «ромб», «прямоугольник», «квадрат» (см. рис. 95).

Рис. 95

Теперь включаем в эту сложную схему понятие «параллелограмм».' Поскольку ромб и прямоугольник — виды параллелограмма, то всю уже достаточно сложную схему заключаем в овал, означающий фигуру–понятие «параллелограмм». И получаем еще более сложную схему (см. рис. 96).

Рис. 96

Понятно, что все это четырехугольники. Так что заключаем их в общую рамку (см. рис. 97).

Рис. 97

Между прочим, то, что прямоугольник и ромб — виды параллелограмма, звучит не так уж странно. А вот квадрат параллелограммом обычно не называют. Тем не менее это так. И это видно на схеме.

А есть еще трапеция. Она четырехугольник, но ведь не параллелограмм же. Ее, ладно, поместим в рамке «четырехугольник», но рядо–положно с рамкой «параллелограмм» (см. рис. 98).

Рис. 98

Но ведь могут быть и четырехугольники, которые нельзя назвать ни трапециями, ни параллелограммами. Стороны у такого четырехугольника не равны и не параллельны, но углов четыре. Изображения таких четырехугольников представлены на рис. 99.

Рис. 100

То, что представлено наглядно на приведенной схеме, можно выразить многословным текстом. Четырехугольники делятся на па–раллелограммы и непараллелограммы. Непараллелограммы делятся на трапеции и четырехугольники неправильной формы. Параллелограммы могут быть прямоугольниками и могут быть ромбами. Прямоугольник может быть квадратом. Некоторые ромбы являются одновременно прямоугольниками. Тогда это квадраты. Квадрат — это и ромб, и прямоугольник, и конечно же параллелограмм. Ромб может быть прямоугольником, тогда это квадрат. Непараллелограмм не может быть ромбом или прямоугольником. Конечно же он не может быть и квадратом. И так далее. Но в тексте нет той наглядности, которая делает материал легко понимаемым и легко запоминаемым.

Вернемся к рис. 84 и рис. 87.

Рис. 84

Рис.Й7

На каждом из них представлен простой (одинарный) перекрест. То есть перекрест двух понятий. А на рис. 50 перекрещиваются несколько понятий. Также, как на рис. 100. В этих случаях мы имеем дело со сложными понятийными перекрестами.

При этом в рис. 50 на хэтчбэки и седаны делятся только легковые автомобили. А в рис. 100 делятся на трапеции и неправильные четырехугольники только «непараллелограммы». А параллелограммы охватывают перекрещивающиеся понятия «прямоугольник» и «ромб». Ну что ж, учтем, что может быть и так.

Поделиться:
Популярные книги

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Босс для Несмеяны

Амурская Алёна
11. Семеро боссов корпорации SEVEN
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Босс для Несмеяны

Меч Предназначения

Сапковский Анджей
2. Ведьмак
Фантастика:
фэнтези
9.35
рейтинг книги
Меч Предназначения

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3