Личность и Абсолют
Шрифт:
Тут вспоминается «определение» алгебраического числа: оно является корнем уравнения с целыми коэффициентами. Собственно трансцедентное число есть такое, которое может быть корнем дифференциального уравнения с целыми коэффициентами. Значит, гипертрансцедентное число—это такое, которое не может быть корнем дифференциального уравнения с целыми коэффициентами.
c) Едва ли математики понимают философское значение связи трансцедентности с корнем дифференциального уравнения. Если вспомнить наше учение о трансцедентной иррациональности в ее отличии от алгебраической (§ 110), то мы утверждали, что эта последняя оказывается одномерной, она есть простейшая и, так сказать, одноплановая иррациональность, математически определяемая только простым извлечением корня. Трансцедентная иррациональность—это многомерная, и прежде всего двухмерная, иррациональность. Мы показали на основании признака Лиувилля (§ 111), что трансцедентное число предполагает переплетение двух разных иррациональностей, так как логически мы имеем здесь становление становления. Отсюда и эманационный характер трансцедентности. Это переплетение двух разных иррациональностей привело нас к двухмерной комплексной области.
Если так, то тогда понятно, почему трансцедентное число, не являясь корнем алгебраического уравнения с целыми коэффициентами, является тем не менее корнем дифференциального уравнения. Ведь последнее, содержа в себе производные, тем самым содержит помимо той простой иррациональности, которая возможна в алгебраической области, еще и другую, особую иррациональность, ту, которую мы получаем в результате дифференцирования, или, вернее, ту, благодаря которой возможен переход от функции к ее инобытию, а затем и к закону инобытийных соотношений между функцией и аргументом, т. е. к производной. Так или иначе, но дифференциальное уравнение обеспечивает двухмерную иррациональность, которой не хватает в алгебраическом уравнении.
d) Но если так, то тогда я спрашиваю себя: а если мне нужна трехмерная или четырехмерная иррациональность, то не значит ли это, что мое трансцедентное число отказывается быть корнем дифференциального уравнения? Другими словами, числа гипертрансцедентное не эквивалентно ли числу гиперкомплексному, подобно тому как вещественная степень трансцедентности эквивалентна спирали, а мнимая ее степень— обыкновенному комплексному, числу (и получаемой таким образом окружности)? Если это так, то тогда в нашем гиперкомплексном числе мы и получим дошедшую до последней диалектической зрелости и выраженности эманацию трансцедентного, которая зарождается в Эйлеровых тригонометрических выражениях мнимых степеней Неперова числа.
e) Поскольку до сих пор не существует исследования гипертрансцедентных чисел и еще нет указания их точных свойств, поставленный вопрос не может найти для себя того или другого ясного ответа. Если этот ответ будет отрицательным, то это будет значить, что наше учение о гиперкомплексах, отражая по своему содержанию давно известные истины математики (линейные алгебры, всеобщая алгебра) и потому едва ли уязвимое в этом отношении, окажется истиной только диалектического ума, еще не нашедшей своего математического соответствия (если иметь в виду связь гиперкомплексов с трансцедентностью).
6. а) Так или иначе, но гиперкомплексное число является с чисто диалектической точки зрения самым зрелым, самым сложным и самым развитым продуктом арифметического мышления. Когда мы говорили о внешнем инобытии числа (положительное, отрицательное, нуль), мы еще могли перейти к внутреннему инобытию (целое, дробное, бесконечное). Когда мы обозрели и внутренние, и внешние инобытийные судьбы числа, мы еще могли доискиваться той области, где то и другое совпадает (рациональное, иррациональное, мнимое). Но когда мы вмес-; тили в число не только просто его внутренно–внешнее инобытие, но! и всякое инобытие, какое только для него возможно, то больше идти уже некуда. Алгебраическое число обобщило все предыдущие типы числа в том смысле, что поставило их лицом к миру с тем безбрежным инобытийно–иррациональным морем, которое их омывает. Оно запретило им бросаться в это море, но оно сделало возможным в него бросаться. Потому оно—только потенция, потенция целости и потенция простой иррациональности. Трансцедентное число уже ринулось в это безбрежное море иррациональности, чтобы его охватить, чтобы его вместить в себя. И вот оно вместило его. Но оно вместило его сразу, целиком, как бы влило в себя, еще не размеривши его и не приведя в полный порядок. Однако тут рождается гиперкомплексное число, которое не только вмещает в себя всю бесконечность инобытийных бездн, но которое превращает ее в стройный, зрительный, фигурно–размеренный космос.
b) Дальше идти некуда. Все типы арифметического числа этим исчерпаны. Тут—последняя зрелость арифметического числа. Поэтому дальнейшее исследование возможно только уже на совершенно новой диалектической ступени, за пределами типов числа вообще. В самом деле, допустим, что число, вместившее в себя бесконечность своих становлений, продолжает вмещать в себя еще дальнейшие свои становления. В этом случае или данное становление вольется в бесконечность уже имеющихся становлений и в ней потонет, — тогда мы останемся при типе числа, который уже нами получен, и никакого нового типа не образуется; или новое становление возымеет совсем новое значение, которое может получиться, если новое становление не просто вместится в данное число, но затронет самую его субстанцию, вовлечет в становление само число настолько, что оно уже перестанет быть самим собою и превратится в новое число. В последнем случае мы, очевидно, покидаем область числа как такового, область тех или иных типов чисел, но переходим к проблемам становления самих чисел или к арифметическим операциям.
Так гибнет тип числа и рождается числовая операция.
1. Нарисованная в предыдущем диалектическая картина числовой типологии претендует, как и вообще диалектика, только на точность взаимосвязи категорий при определенной заданной точке зрения. При всжой другой точке зрения взаимосвязь будет иная. Нашу взаимосвязь числовых типов можно [обозреть] при помощи следующей схемы.
Перво–принцип=инобытие натурального ряда | Внешнее инобытие | Внутреннее
| Внутренно–внешнее инобытие |
Бытие | Положительное число | Целое число | Рациональное число |
Становление (инобытие) | Отрицательное число | Дробь | Иррациональное число |
I. а) постоянное | |||
b) переменное | |||
c) непрерывное | |||
II. Прерывное | |||
III. Предел | |||
Ставшее | Нуль | Бесконечность | Мнимое (комплексное) число |
Выразительная форма | Алгебраическое число | Трансцедентное число | Гиперкомплексное число |
В основу этой диалектики положен принцип числового типа как принцип инобытия числа, понимая под бытием натуральный ряд чисел. Отсюда—рассмотрение числового типа с точки зрения разных видов инобытия—внешнего, внутреннего и внутренно–внешнего, что зафиксировано в вертикальных колонках схемы. С другой стороны, материал данного «бытия» (натуральный ряд) рассматривается и с общедиалектической точки зрения, которую мы понимаем как триаду, или как тетрактиду, или как пентаду (о возможной многомерности этих построений говорится выше, в § 31). В данном случае, если понимать рассматриваемое здесь инобытие натурального ряда чисел в качестве перво–принципа всех типов числа, то у нас применяется пентада, образец и первообраз которой мы имеем уже в общей теории числа (§ 26). Существенно важен также особый переход от вневыразительных типов числа к выразительным, разъясненный у нас в § 35. Самым важным является здесь то, что, в то время как девять вневыразительных типов представляют собою две стороны диалектической триады (одна—как горизонталь, другая—как вертикаль схемы), выразительная триада является вполне самостоятельным целым, вырастающим на обобщении всех [911] девяти вневыразительных типов, а вовсе не так, как может внешне подсказывать схема, т. е. вовсе не так, чтобы каждая выразительная категория соответствовала только своей вертикали.
911
В рукописи: …целым, выражающим не обобщение всех…
2. а) Предлагаемая диалектика типов числа является диалектикой еще и в том смысле, что при нерушимой взаимосвязи всех категорий (вытекающих, как это и требуется в данном случае, из одного и единственного перво–принципа) она требует полной специфичности каждого типа и полной несводимости его ни на какой другой тип. С этой точки зрения общеизвестные попытки свести все типы числа на целое и положительное число, наиболее резким образцом которых может служить учение Кронекера, заведомо обрекаются для нас на полный неуспех. JI. Кронекер сводит всю математику на теорию натуральных чисел и целых целочисленных функций от неопределенных символов и, v 9w… при конечном числе операций [912] . В результате все эти ухищрения сводятся только к новому математическому правопщанию, так как фактически нет, конечно, никакой возможности избежать самих логических категорий, лежащих в основе каждого типа. Кронекер рассматривает главнейшие типы числа при помощи т. н. функциональных сравнений. И получается: чтобы избежать слова «минус» в формуле 7—9=3—5, ему надо пользоваться таким функциональным сравнением: 7+9=3 + 5х (mod х+1). Но ведь это значит, что обе сравниваемые здесь величины при делении на х+1 имеют один и тот же остаток. А чтобы убедиться в этом, необходимо реально произвести эти деления, что потребует и употребления операции вычитания. Следовательно, тут мы имеем дело только с иным правописанием, с иными знаками обозначения, а сущность обозначаемого осталась совершенно незатронутой.
912
Кронекер. Понятие о числе. Рус. пер. в «Основаниях арифметики», изд. Казанского математич. студенч. кружка, 1907.
b) И для чего понадобилась такая теория? Если Кронекер хочет показать исходный пункт всякого рассуждения о числе, то и без всяких доказательств ясно, что основой всей математики является простой счет, т. е. система натурального ряда (почему мы и называем этот последний бытием непосредственной сущности числа). Не умея считать, нельзя вообще высказать никакого суждения о числе. Если Кронекер хотел дать более строгую и более экономную систему обозначений, то всякому ясно, что употребление плюсов, минусов, знаков дроби, показателей, радикалов и т. д. несравненно экономнее тяжелых обозначений через функциональные сравнения. Эти последние, кроме того, имеют гораздо более широкое значение, которое совершенно излишне для простых категорий отрицательности, дробности и пр. Наконец, если упор на натуральные числа имел целью не просто указать исходный пункт самого понятия и не просто дать другое обозначение для того же самого предмета, а имел целью сделать ненужным самые понятия дробности, иррациональности и т. д., то это можно квалифицировать только как нелепость, изобличающую себя при первом же своем проявлении. Упование на то, что все числа можно «свести» на целые числа, вредно еще и тем, что оно до известной степени преграждает анализ тех категорий, которые заложены в основе разных типов числа, понимаемых как специфические индивидуальности. Тут надо уметь не столько «сводить» одно на другое, сколько «выводить» одно из другого.