Maple 9.5/10 в математике, физике и образовании
Шрифт:
collect(p, x) — возвращает полином, объединяя коэффициенты при степенях переменной х.
Ниже даны примеры применения этих функций (файл coefcoll):
Дополнительные
5.3.3. Оценка коэффициентов полинома по степеням
Полином может быть неполным, то есть не содержать членов со степенями ниже некоторой. Функция lcoeff возвращает старший, а функция tcoeff — младший коэффициент полинома нескольких переменных. Эти функции задаются в виде:
Функции lcoeff и tcoeff возвращают старший (младший) коэффициент полинома р относительно переменной х или ряда переменных при многомерном полиноме. Если х не определено, lcoeff (tcoeff) вычисляет старший (младший) коэффициент относительно всех переменных полинома p. Если третий аргумент t определен, то это имя назначено старшему (младшему) члену p. Если х — единственное неизвестное, и d — степень p по х, то lcoeff(p, x) эквивалентно coeff(p, x, d). Если х — список или множество неизвестных, lcoeff (tcoeff) вычисляет старший (младший) коэффициент p, причем p рассматривается как полином многих переменных. Имейте в виду, что p должен быть разложен по степеням неизвестного x до вызова функций lcoeff или tcoeff.
Приведем примеры применения функций lcoeff, tcoeff и coeffs (файл polan):
5.3.4. Оценка степеней полинома
Функция degree возвращает высшую степень полинома, a ldegree — низшую
Функции degree и ldegree используются, чтобы определить высшую и низшую степень полинома от неизвестного (неизвестных) х, которое чаще всего является единственным, но может быть списком или множеством неизвестных. Полином может иметь отрицательные целые показатели степеней при х. Таким образом, degree и ldegree могут возвратить отрицательное или положительное целое число. Если выражение не является полиномом от x сданным параметром, то возвращается FAIL.
Чтобы degree и ldegree возвратили точный результат, полином обязательно должен быть сгруппирован по степеням х. Например, для выражения (x+1)(х+2)-x^2 функция degree не обнаружит аннулирование старшего члена и неправильно возвратит результат 2. Во избежание этой проблемы перед вызовом degree следует применять к полиному функции collect или expand. Если х — множество неизвестных, degree/ldegree вычисляет полную степень. Если х — список неизвестных, degree/ldegree вычисляет векторную степень. Векторная степень определяется следующим образом:
Полная степень тогда определяется следующим образом:
или
Обращаем внимание на то, что векторная степень зависит от порядка перечисления неизвестных, а полная степень не зависит. Примеры применения функций degree и ldegree:
5.3.5. Контроль полинома на наличие несокращаемых множителей
Для контроля того, имеет ли полином несокращаемые множители, может использоваться функция irreduc(p) и ее вариант в инертной форме lreduc(p,K), где K — RootOf-выражение. Ниже приведены примеры применения этих тестовых функций: