Чтение онлайн

на главную - закладки

Жанры

Математические модели в естественнонаучном образовании
Шрифт:

pre = nxt; % последнее значение будет начальным для следующей итерации

end

end

% построение графика

dcolor = [0,0,1]; % настройка цвета маркера: синий

[r,c] = meshgrid(1:L,a); % наполяем сетку данных координат

surf(r,c,mat,'Marker','*','MarkerSize',p_siz,'FaceColor','None','MarkerEdgeColor', dcolor,'EdgeColor','None')

view([90,0,0]) % фиксируем направление камеры

ylim([a0,a1]) % размещаем данные на диаграмме

end

2. Для популяции со временем регенерации значительно меньшей единицы времени может быть неуместно думать о пропускной способности как о константе. Исследуйте, что произойдет, если пропускная способность изменяется синусоидально. Для начала попробуйте понять следующие команды MATLAB:

t=[0:50]

K=5+sin((2*pi/12)*t)

p=.1; pops=p

for i=1:50

p=p+.2*p*(1-p/K(i));

pops=[pops p];

end

plot(t,K,t,pops)

Рекомендации

 Объясните, почему синусоидально изменяющаяся пропускная способность может иметь физический

или социально-экономический смысл при некоторых обстоятельствах.

 Исследуйте поведение модели для различных вариантов

 и
. Колеблется ли
 вместе с
? Обратите особое внимание на то, когда популяция достигает пика и каково среднее значение
 в долгосрочной перспективе. Соответствуют ли результаты машинных экспериментов вашей интуиции?

 Что происходит, если изменяется частота колебаний пропускной способности? Попробуйте заменить

 в предыдущем примере на
 при разных N.

 По мере увеличения

 эта модель демонстрирует бифуркации? Хаос?

3. Изучите, что произойдет, если пропускная способность изменяется случайным образом в логистической модели, и, в частности, влияние такой пропускная способность на небольшие популяции. Нужно будет знать, что команда rand(1) в MATLAB выдает случайное число в диапазоне от 0 до 1 с равномерным распределением, и что randn(1) генерирует случайное число из нормального распределения с матожиданием 0 и стандартным отклонением 1. Можете начать с использования программы onepop.m с выражением типа 10 + rand(1) в качестве пропускной способности в логистической модели.

Рекомендации

 Возможно, 10*rand(1) или 10+2*randn(1) были бы лучшей формулой для значений

 в экспериментальной модели. Опишите качественные различия между реальными ситуациями, которые могут описывать эти математические выражения.

Для выбранного выражения изучите поведение модели для различных вариантов

 и
. Как ведет себя
? Каково среднее значение
 в долгосрочной перспективе? Соответствуют ли результаты вашей математической интуиции?

 По мере увеличения

 эта модель демонстрирует бифуркации? Хаос?

 Исследуйте, что происходит, если численность популяции небольшая и принимает целые значения. В MATLAB команда floor(p) возвращает ближайшее целое число меньше или равное

. Модель будет похожей на
, где значение
 сначала задаётся константой, а затем изменяется случайным образом.

1.4. Вариации на тему логистической модели

Представляя дискретную логистическую модель в предыдущих разделах, старались делать модель максимально простой, чтобы сосредоточиться на разработке основных идей. Теперь, когда концепции равновесия и стабильности, а также техника построения паутинных диаграмм были разработаны, можно уделить больше внимания созданию более реалистичной модели.

Рассматривая график функции

 от
 на
рисунке 1.9, для модели
, одной из очевидных, но реально невозможных особенностей динамического поведения моделируемой численности, является тот факт, что парабола опускается ниже горизонтальной оси, когда отклоняемся достаточно далеко вправо. Это означает, что большие популяции
 становятся отрицательными на следующем временном этапе. Хотя можно интерпретировать отрицательную популяцию как вымершую, либо как долг, кредитное плечо, в экономических приложениях, но это может быть не то поведение, которое на самом деле произойдет и которое хотели бы, чтобы модель описала.

Рисунок 1.9. Модель с нереалистичными

 начиная с некоторого
.

Возможно, более реалистичная модель допускала бы сколь угодно большие

, от которых значения
 дают очень маленькие, но все же положительные, значения
. Таким образом, популяция, значительно превышающая свою пропускную способность, может немедленно упасть до очень низких уровней, но, по крайней мере, часть популяции выживет. Графически
 должен зависеть от
 так, как показано на рисунке 1.10.

Рисунок 1.10. Новая модель с

.

Функция с таким графиком имеет вид

. Экспонента в этой формуле обеспечивает экспоненциальное убывание, когда движемся по графику горизонтально отдаляясь от начала координат, в то время как коэффициент
 вызывает начальный подъем на графике вблизи начала координат.

Модель

 иногда называют дискретной логистической моделью или моделью Рикера. Такая модель роста популяции, названная в честь её первооткрывателя Билла Рикера, была предложена в далёком 1954 году. Легко вычислить точки равновесия модели, ими являются
 и
. Можно дополнительно проанализировать эту модель, нарисовав паутинную диаграмму и вычислив стабильность равновесий, как делалось неоднократно в предыдущих разделах.

Можно возразить против подхода к моделированию в формате «кролик из шляпы»; без объяснений, откуда взялось уравнение модели Рикера. Но ниже будет дано одно пояснение, важно понимать, что действительно важно, так это то, какие качественные изменения демонстрирует функция на графике, насколько реалистично такое поведение. Если странная формула дает нужный график, то этого уже достаточно для оправдания ей использования.

Для более полного обоснования адекватности модели Рикера вернемся к графику функции изменения численности населения на душу населения

 как функции от
, что в свою очередь стимулировало развитие логистической модели. Единственная причина выбора формулы

Поделиться:
Популярные книги

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник

Новобрачная

Гарвуд Джулия
1. Невеста
Любовные романы:
исторические любовные романы
9.09
рейтинг книги
Новобрачная

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга