Чтение онлайн

на главную - закладки

Жанры

Математические модели в естественнонаучном образовании
Шрифт:

Готовые тексты программ приводятся в целях минимизации необходимого багажа знаний синтаксиса MATLAB. Чтобы запустить большинство программ ниже, просто скопируйте их из электронного варианта книги или введите в окне редактора скриптов MATLAB.

Можно просто сохранить текст программы в файл с расширением m. Для запуска такого скрипта в окне водится имя запускаемого файла. После запуска будет задан ряд вопросов о конструируемых моделях и их параметрах. Команда help имя_файла также предоставляет краткое описание функций программы, получаемое из комментариев

в первых строках программы. Поскольку m-файлы являются текстовыми файлами, они могут быть прочитаны и изменены любым заинтересованным пользователем.

Некоторые m-файлы определяют функции, которые принимают аргументы. Например, такая команда, как compseq(seq1,seq2), запускает программу compseq.m для сравнения двух последовательностей ДНК seq1 и seq2. Набрав help compseq, можно увидеть объяснение синтаксиса такой функции. A mat-файл содержит данные, доступ к которым возможен только из MATLAB. Чтобы загрузить такой файл, скажем, seqdata.mat, введите load seqdata. Имена всех новых переменных, которые будут созданы, можно увидеть вводя команду who, в то время как значения, хранящиеся в этих переменных, можно увидеть просто вводя имя переменной.

Некоторые файлы данных могут быть предоставлены в виде m-файлов, тогда вспомогательные комментарии и пояснения сохраняются вместе с данными. Для них запуск m-файла создает переменные, так же, как и загрузка mat-файла. Комментарии можно прочитать с помощью любого текстового редактора.

В ходе выполнения задач для самостоятельного решения предлагается использовать следующие файлы скриптов MATLAB, доступных из открытых источников:

 aidsdata.m – содержит данные числа случаев синдрома приобретенного иммунодефицита;

 cobweb.m и cobweb2.m – рисуют графики с паутинной диаграммой для итераций модели с одной популяцией; первая программа оставляет все рисуемые линии, а вторая программа постепенно стирает их;

 compseq.m – функция сравнивает две последовательности ДНК, получая частотную таблицу количества фрагментов с каждой из возможных базовых комбинаций;

distances.m – функция вычисляет расстояния Джукса-Кантора, 2-параметрическое расстояние Кимуры и логарифмическое расстояния между всеми парами в коллекции последовательностей ДНК;

 distJC.m, distK2.m и distLD.m – функции вычисляют расстояние Джукса-Кантора, 2-параметрическое расстояние Кимуры и логарифмическое расстояние для одной пары последовательностей, описываемых частотным массивом сайтов ДНК с каждой комбинацией оснований;

 flhivdata.m – содержит последовательности ДНК гена оболочки вируса иммунодефицита человека из «случая стоматолога во Флориде»;

 genemap.m – моделирует данные тестового скрещивания для проекта генетического картирования, используя гены мухи или мыши;

 genesim.m – производит временной график частоты аллелей гена в популяции фиксированного размера; относительные значения приспособленности для генотипов могут быть установлены для моделирования естественного отбора;

 informative.m – функция находит участки в выровненных последовательностях ДНК, которые

информативны для метода максимальной экономии;

 longterm.m – рисует диаграмму бифуркации для модели с одной популяцией, показывая долгосрочное поведение по мере изменения значения одного параметра;

 markovJC.m и markovK2.m – эти функции осуществляют получение марковской матрицы Джукса-Кантора или 2-параметрической модели Кимуры с заданными значениями параметров;

 mutate.m и mutatef.m – моделирует мутации последовательности ДНК по марковской модели замещения оснований; вторая программа является функциональной версией первой;

 nj.m – функция реализует алгоритм присоединения соседей для построения дерева из массива расстояний;

 onepop.m – отображает графики итераций модели с одной популяцией;

 primatedata.m – содержит последовательности митохондриальной ДНК из 12 приматов, а также вычисленные расстояния между ними;

 seqdata.mat – содержит смоделированные данные последовательности ДНК;

 seqgen.m – функция генерирует последовательности ДНК с заданной длиной и распределением оснований;

 sir.m – отображает итерации эпидемиологической модели SIR, включая графики временной и фазовой плоскости;

 twopop.m – отображает итерации 2-популяционной модели, включая графики временной и фазовой плоскости.

Глава 1. Динамическое моделирование разностными уравнениями

Независимо от того, исследуем ли мы рост числа выпускников математических специальностей, взаимодействие с работодателями, эволюцию рабочих программ классических курсов, передачу фундаментальных идей или распространение фейков, дидактические системы характеризуются изменениями и адаптацией. Даже когда они кажутся постоянными и стабильными, это часто является результатом баланса тенденций, толкающих системы в разных направлениях. Большое количество взаимодействий и конкурирующих тенденций может затруднить просмотр полной картины сразу.

Как мы можем понять такие сложные системы, как те, которые возникают в социальных науках? Как мы можем проверить, достаточно ли нашего предполагаемого понимания ключевых процессов, чтобы описать, как ведет себя система? Математический язык предназначен для точного описания, и поэтому описание сложных систем часто требует математической модели.

В этой главе мы рассмотрим некоторые способы, которыми математика используется для моделирования динамических процессов в обучении математике. Простые формулы связывают, например, количество абитуриентов в определенном году с выпускниками последующих лет. Мы учимся понимать последствия, которые можно прогнозировать, составляя уравнение, средствами математического анализа, при этом наша формализация может быть проверена эмпирическими наблюдениями. Хотя многие из моделей, которые мы рассматриваем, могут на первый взгляд показаться грубыми упрощениями, их сила в простоте. Чем проще модель, тем яснее становятся предсказываемые её последствия исходя из самых базовых предположений.

Поделиться:
Популярные книги

Журналист

Константинов Андрей Дмитриевич
3. Бандитский Петербург
Детективы:
боевики
8.41
рейтинг книги
Журналист

Завещание Аввакума

Свечин Николай
1. Сыщик Его Величества
Детективы:
исторические детективы
8.82
рейтинг книги
Завещание Аввакума

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Последняя Арена 3

Греков Сергей
3. Последняя Арена
Фантастика:
постапокалипсис
рпг
5.20
рейтинг книги
Последняя Арена 3

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

Орден Багровой бури. Книга 1

Ермоленков Алексей
1. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 1

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера