Чтение онлайн

на главную - закладки

Жанры

Математические модели в естественнонаучном образовании
Шрифт:

1,94 3,04 4,62 6,72 9,26 11,88 14,08 15,52 16,26 16,60 16,72

1.1.7. Заполните пропуски:

а. Модели

 и
 представляют растущие значения, когда
 – любое число в диапазоне _______, а
 – любое число в диапазоне _______.

б. Модели

 и
 представляют
уменьшающиеся значения, когда
 – любое число в диапазоне _______, а
 – любое число в диапазоне _______.

в. Модели

 и
 представляют стабильные значения, когда
 – любое число в диапазоне _______ и когда
 – любое число в диапазоне _______.

1.1.8. Объясните, почему модель

 не может иметь смысла для описания численности популяции, когда
.

1.1.9. Предположим, что популяция описывается моделью

 и
. Найдите
 для
.

1.1.10. Говорят, что модель имеет устойчивое состояние или точку равновесия при

 если всякий раз, когда
, имеем
.

а. Перефразируйте определение следующим образом: модель имеет устойчивое состояние при

 если всякий раз, когда
, имеем
 .

б. Перефразируйте определение неформально: модель имеет устойчивое состояние

, если ___.

в. Может ли модель, описываемая равенством

 иметь устойчивое состояние? Объясните почему.

1.1.11. Объясните, почему модель

 приводит к формуле
.

1.1.12. Предположим, что на численность определенного населения влияют только рождение, смерть, иммиграция и эмиграция, каждая из которых происходит ежегодно в размере, прямо пропорциональном численности населения. То есть, если население составляет

, то в течение периода времени в 1 год число рождений составляет
, число смертей
, число иммигрантов равно
, а число эмигрантов равно
, для некоторых
,
,
 и
. Покажите, что популяция все еще может быть смоделирована равенством
 и выведите формулу для вычисления
.

1.1.13.

Как хорошо известно лимнологам и океанографам, количество солнечного света, проникающего на различные глубины воды, может сильно повлиять на численность живущих там организмов. Предположим, что вода имеет равномерную мутность, а количество обитателей на каждом метре в глубину пропорционально количеству поступающего света.

а. Объясните, почему это приводит к модели вида

, где
 обозначает количество света, проникшего на глубину
 метров.

б. В каком диапазоне должны находиться параметры этой модели, чтобы иметь физический смысл?

в. При

 и
 постройте график
 для
.

г. Применима ли аналогичная модель к фильтрации света через полог леса? Применимо ли там предположение о «равномерной мутности»?

1.1.14. В таблице 1.3 приведены данные о численности обучающихся физмат школ.

а. Изобразите данные на графике. Соответствуют ли эти данные геометрической модели роста? Объясните почему да или почему нет, используя графические и численные методы оценки. Можете ли придумать факторы, которые приведут к отклонению от геометрической модели?

б. Используя данные только за 1980 и 1985 годы для оценки скорости роста геометрической модели, посмотрите, насколько хорошо результаты модели согласуются с данными последующих лет.

в. Вместо того, чтобы просто использовать данные 1980 и 1985 годов для оценки показателя роста числа школьников, найдите способ использовать все данные, чтобы получить то, что (предположительно) должно быть лучшей геометрической моделью. Проявите творчество. Есть несколько разумных подходов. Соответствует ли ваша новая модель данным лучше, чем модель из части (б)?

Таблица 1.3. Оценки числа школьников

Год Численность школьников (в 1 000 человек)

1980 213,260

1985 231,658

1990 245,976

1995 254,504

2000 263,368

2005 263,952

2010 302,690

2015 328,602

2020 359,980

1.1.15. Предположим, что популяция моделируется уравнением

, где
 измеряется в единицах. Если решим измерить численность популяции в тысячах единиц, обозначив это число за
, то уравнение, моделирующее популяцию, могло измениться. Объясните, почему модель по-прежнему будет простой
. Подсказка: обратите внимание на то, что
.

1.1.16. В данной задаче исследуем, как изменится модель, если изменить количество времени, представленное приращением переменной

 на единицу. Важно отметить, что эта ситуация не всегда имеет биологический смысл. Например, для организмов, таких как многие насекомые, поколения не перекрываются. Дрозофилы не воспитывают себе преемников. Но время их размножения имеет регулярное распределение, поэтому использование приращения времени меньшее, чем промежуток между двумя последовательными временами рождения, было бы бессмысленным. Однако для более сложных организмов, таких как люди, с перекрывающимися поколениями и практически непрерывным размножением, нет естественного ограничения на выбор значения приращения времени. Таким образом, популяции иногда моделируются с «бесконечно малым» приращением времени (т.е. дифференциальными уравнениями, а не разностными). Эта ситуация иллюстрирует связь между двумя типами моделей: дискретная и континуальная.

Пусть популяция моделируется уравнением

,
, где каждое приращение
 на 1 представляет собой прохождение 1 года.

а. Предположим, что захотели создать новую модель для этой популяции, где каждое приращение

 на 1 представляет 0.5 лет, а численность популяции теперь обозначается
. При этом хотим, чтобы новая модель описывала те же популяции, что и первая модель, с интервалом в 1 год (таким образом,
). Следовательно, составляется таблица 1.4. Заполните строку
 в таблице так, чтобы рост был все еще геометрическим. Затем предложите уравнение модели, выражающее
 через
.

Поделиться:
Популярные книги

Журналист

Константинов Андрей Дмитриевич
3. Бандитский Петербург
Детективы:
боевики
8.41
рейтинг книги
Журналист

Завещание Аввакума

Свечин Николай
1. Сыщик Его Величества
Детективы:
исторические детективы
8.82
рейтинг книги
Завещание Аввакума

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Последняя Арена 3

Греков Сергей
3. Последняя Арена
Фантастика:
постапокалипсис
рпг
5.20
рейтинг книги
Последняя Арена 3

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

Орден Багровой бури. Книга 1

Ермоленков Алексей
1. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 1

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера