Чтение онлайн

на главную - закладки

Жанры

Математика для любознательных
Шрифт:

Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие - похвальное правило, которому не мешало бы и нам следовать.

Любимым приемом поверки был так называемый «способ 9». Этот изящный прием, который полезно и теперь знать каждому, нередко описывается и в современных арифметических учебниках, особенно иностранных. Правда, он почему-то мало теперь употребляется на практике, но это нисколько не умаляет его достоинств.

Поверка девяткой основана на «правиле остатков», гласящем:

остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число. Точно так же остаток произведения равен произведению остатков множителей. С другой стороны, известно также [54] , что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает остаток 2, и то же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба указанных свойства, мы и приходим к приему поверки девяткой, т. е. делением на 9. Покажем на примере, в чем он состоит.

54

Выясняется попутно при выводе признака делимости на 9 (читатель найдет вывод в моей «Хрестоматии-задачнике по начальной математике»).

Пусть требуется проверить правильность сложения следующего столбца:

Составляем в уме сумму цифр каждого слагаемого, причем в получающихся попутно числах также складываем цифры (делается это в самом процессе сложения цифр), пока, в конечном результате, не получим однозначного числа. Результаты эти (остатки от деления на 9) записываем, как показано на примере, рядом с соответствующим слагаемым. Складываем все остатки (7 + 7 + 1 + 2 = 17; 1 + 7 = 8), - получаем 8. Такова же должна быть сумма цифр итога (5339177), если действие выполнено верно: 5 + 3 + 3 + 9 + 1 + 7 + 7, после всех упрощений, равно 8.

Поверка вычитания выполняется точно так же, если принять уменьшаемое за сумму, а вычитаемое и разность - за слагаемые. Например:

Несложна и поверка умножения, как видно из следующего примера:

Если при такой поверке умножения обнаружена будет ошибочность результата, то чтобы определить, где именно кроется ошибка, можно поверить способом 9-ки каждое частное произведение отдельно; а если здесь ошибки не окажется, надо поверить еще и сложение частных произведений. Такая поверка сберегает время и труд только при умножении многозначных чисел; при малых числах проще, конечно, выполнить действие заново.

Как поверять по этому способу деление? Если у нас случай деления без остатка, то делимое рассматривается, как произведение делителя на частное. В случае же деления с остатком пользуются тем, что делимое = делителю x частное + остаток. Например:

Выписываю из «Арифметики» Магницкого предлагаемое там для поверки девяткой удобное расположение:

Д л я у м н о ж е н и я:

Д л я д е л е н и я:

Подобная поверка действий, без сомнения, не оставляет желать лучшего в смысле быстроты и удобства. Нельзя сказать того же о ее надежности: ошибка может и ускользнуть от нее. Действительно, ведь одну и ту же сумму цифр могут иметь разные числа; не только перестановка цифр, но иной раз даже и замена одних другими остаются при такой поверке необнаруженными. Укрываются от контроля также лишние девятки и нули, потому что не влияют на сумму цифр. Всецело полагаться поэтому на такой прием поверки было бы неосмотрительно. Предки наши

сознавали это и не ограничивались одною лишь поверкой с помощью девятки, но производили еще дополнительную поверку - чаще всего с помощью семерки. Этот прием основан на том же «правиле остатков» ( стр. 174 ), но не так удобен, как способ девятки, потому что деление на 7 приходится выполнять полностью, чтобы найти остатки (а при этом легко возможны ошибки в действиях самой поверки). Две поверки - девяткой и семеркой - уже являются гораздо более надежным контролем: что ускользнет от одной, будет уловлено другою. Ошибка не обнаружится лишь в том случае, если разность истинного и полученного результатов кратна числу 7x9 = 63. Так как подобная случайность все же возможна, то и двойная поверка не дает полной уверенности в правильности результата.

Впрочем, для обычных вычислений, где ошибаются чаще всего на 1 или 2 единицы, можно ограничиться только поверкою девяткой. Дополнительная поверка семеркой чересчур обременительна. Только тот контроль хорош, который не мешает работе.

Хорошо ли мы множим?

Старинные способы умножения были неуклюжи и неудобны, - но так ли хорош наш нынешний способ, чтобы в нем невозможны были уже никакие дальнейшие улучшения? Нет, наш способ безусловно не является совершенным; можно придумать еще более быстрые или еще более надежные. Из нескольких предложенных улучшений (ср. гл. VII) укажем пока одно, увеличивающее не быстроту выполнения действия, а его надежность. Оно состоит в том, что при многозначном множителе начинают с умножения не на последнюю, а на первую цифру множителя. Выполненное на стр. 175-й умножение 8713 x 264 примет при этом такой вид:

Преимущество подобного расположения в том, что цифры частных произведений, от которых зависят первые, наиболее ответственные цифры результата, получаются в начале действия, когда внимание еще не утомлено и, следовательно, вероятность сделать ошибку наименьшая. (Кроме того, способ этот упрощает применение так называемого «сокращенного» умножения, о котором мы здесь распространяться не можем [55] .)

55

См. составленные мною «Таблицы и правила для вычислений». Изд. Промбюро. Ленинград, 1926 г.

Русский способ умножения

Вы не можете выполнить умножения многозначных чисел - хотя бы даже двузначных, - если не помните наизусть всех результатов умножения однозначных чисел, т. е. того, что называется таблицей умножения. В старинной «Арифметике» Магницкого, о которой мы раньше упоминали, необходимость твердого знания таблицы умножения воспета в таких - надо сознаться, чуждых для современного слуха - стихах:

Аще кто не твердит

таблицы и гордит,

Не может познати

числом что множати

И во всей науки,

несвобод от муки,

Колико не учит

туне ся удручит

И в пользу не будет

аще ю забудет.

Автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, не похожий на наши школьные приемы, употребителен в обиходе великорусских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа.

Вот пример:

32 x 13

16 x 26

8 x 52

4 x 104

2 x 208

1 x 416

Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение:

Поделиться:
Популярные книги

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Дорога к счастью

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
6.11
рейтинг книги
Дорога к счастью

Восхождение Примарха 3

Дубов Дмитрий
3. Восхождение Примарха
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восхождение Примарха 3

Младший сын князя. Том 2

Ткачев Андрей Юрьевич
2. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 2

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4

Законник Российской Империи. Том 2

Ткачев Андрей Юрьевич
2. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
6.40
рейтинг книги
Законник Российской Империи. Том 2