Медицинская физика
Шрифт:
В дальнейшем была предложена модель, в основе которой лежит все та же липидная биослоистая мембрана. Эта фосфолипидная основа представляет собой как бы двухмерный растворитель, в котором плавают более или менее погруженные белки. За счет этих белков полностью или частично осуществляются специфические функции мембран – проницаемость, генерация электрического потенциала и т. д. Мембраны не являются неподвижными, спокойными структурами. Липиды и белки обмениваются мембранами и перемещаются как вдоль плоскости мембраны – латеральная диффузия, так и поперек нее – так называемый флип-флоп.
Уточнение строения биомембраны и изучение ее свойств оказались возможными при
Второй широко распространенной моделью биомембраны являются липосомы, которые представляют собой как бы биологическую мембрану, полностью лишенную белковых молекул. Третьей моделью, позволившей изучать некоторые свойства биомембран прямыми методами, является биолипидная (биослой-ная липидная) мембрана (БЛМ).
Мембраны выполняют две важные функции: матричную (т. е. являются матрицей, основой для удерживания белков, выполняющих разные функции) и барьерную (защищают клетку и отдельные компартаменты от проникновения нежелательных частиц).
30. Физические свойства и параметры мембран
Измерение подвижности молекул мембраны и диффузия частиц через мембрану свидетельствует о том, что билипидный слой ведет себя подобно жидкости. Однако мембрана есть упорядоченная структура. Эти два факта предполагают, что фосфолипиды в мембране при ее естественном функционировании находятся в жидкокристаллическом состоянии. При изменении температуры в мембране можно наблюдать фазовые переходы: плавление липидов при нагревании и кристаллизацию при охлаждении. Жидкокристаллическое состояние биослоя имеет меньшую вязкость и большую растворимость различных веществ, чем твердое состояние. Толщина жидкокристаллического биослоя меньше, чем твердого.
Структура молекул в жидком и твердом состояниях различна. В жидкой фазе молекулы фосфолипидов могут образовывать полости (кинки), в которые способны внедряться молекулы дифференцирующего вещества. Перемещение кинка в этом случае будет приводить к диффузии молекулы поперек мембраны.
Перенос молекул (атомов) через мембраны
Важным элементом функционирования мембран является их способность пропускать или не пропускать молекулы (атомы) и ионы. Вероятность такого проникновения частиц зависит как от направления их перемещения (например, в клетку или из клетки), так и от разновидности молекул и ионов.
Явления переноса – это необратимые процессы, в результате которых в физической системе происходит пространственное перемещение (перенос) массы импульса, заряда или какой-либо другой физи30б ческой величины. К явлениям переноса относят диффузию (перенос массы вещества), вязкость (перенос импульса), теплопроводность (перенос энергии), электропроводность (перенос электрического заряда).
На мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно оказывает влияние на диффузию заряженных частиц (ионов и электронов). Перенос ионов определяется двумя факторами: неравномерностью их распределения (т. е. градиентом концентрации) и воздействием электрического поля (уравнение Нернста-Планка):
Уравнение устанавливает связь плотности стационарного потока ионов с тремя величинами:
1) проникаемостью
2) электрическим полем;
3) концентрацией ионов в водном растворе, окружающем мембрану.
Явления переноса относятся к пассивному транспорту: диффузия молекул и ионов происходит в направлении меньшей их концентрации, перемещение ионов – в соответствии с направлением силы, действующей на них со стороны электрического поля.
Пассивный транспорт не связан с затратой химической энергии, он осуществляется в результате перемещения частиц в сторону меньшего электрохимического потенциала.
31. Разновидность пассивного переноса молекул и ионов через биологические мембраны
Простая диффузия через липидный слой в живой клетке обеспечивает прохождение кислорода и углекислого газа. Ряд лекарственных веществ и ядов также проникает через липидный слой. Однако простая диффузия протекает достаточно медленно и не может снабдить клетку в нужном количестве питательными веществами. Поэтому имеются другие механизмы пассивного переноса вещества в мембране, к ним относится диффузия и облегченная диффузия (в комплексе с переносчиком).
Порой, или каналом, называют участок мембраны, включающий белковые молекулы и липиды, который образует в мембране проход. Этот проход допускает проникновение через мембрану не только малых молекул, например молекул воды, но и более крупных ионов. Каналы могут проявлять избирательность по отношению к разным ионам. Облегчает диффузию перенос ионов специальными молекулами-переносчиками.
Потенциал покоя. Поверхностная мембрана клетки неодинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя).
Основной вклад в создание и поддержание потенциала покоя вносят ионы Na+, K+, Cl-. Суммарная
плотность потока этих электронов с учетом их знаков равна:
J = JNA + JK + JCI—.
В стационарном состоянии суммарная плотность потока равна нулю, т. е. число разных ионов, проходящих в единицу времени через мембрану внутрь клетки, равно числу выходящих из клетки через мембрану:
J = 0.
Уравнение Гольдмана-Ходжкина-Катца (безразмерный потенциал возвращается к электрическому):
Различные концентрации ионов внутри и вне клетки созданы ионными насосами – системами активного транспорта. Основой вклад в потенциал покоя вносят только ионы K+ и Cl-.
Потенциал действия и его распространения
При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия.
В нервных волокнах происходит распространение потенциала действия. Распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки: скорость распространения возбуждения по гладким немиелинизированным нервным волокнам примерно пропорциональна квадратному корню из их