Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:

На самом деле результаты, о которых мы говорили, служат подтверждением того, что гиперболическая геометрия является обобщением евклидовой геометрии. Лобачевский особенно подчеркивал это свойство своей теории, назвав ее пангеометрией, то есть «универсальной геометрией».

Теорема Пифагора

Всегда полезно взглянуть на известные результаты через призму другой теории. Но именно в теореме Пифагора эффект новых геометрий наиболее заметен. В гиперболической геометрии теорема Пифагора играет столь же важную роль, как и в геометрии Евклида, и, как можно было ожидать, для небольших расстояний она ведет себя так же, как и другие гиперболические объекты. Другими словами, на небольших расстояниях она совпадает с евклидовой версией. Однако при увеличении расстояния ситуация меняется.

Рассмотрим

гиперболический треугольник, стороны которого мы обозначим а, b и с, где с является гипотенузой; вершинами треугольника будут точки А, В и С. Форма гиперболического треугольника отличается от классической:

Для этого треугольника справедливо равенство

которое может быть переписано в терминах гиперболической геометрии как:

Раскладывая выражение

в степенной ряд, как мы это делали для формулы длины окружности, мы получим следующее равенство:

Отсюда видно, что в случае небольших сторон треугольника формула Пифагора остается в силе:

с2 = а2 + Ь2,

принимая традиционный вид, как в евклидовой геометрии.

* * *

ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ

Гиперболические функции называются так потому, что по свойствам они напоминают классические тригонометрические функции. Они таким же образом связаны с гиперболой, как традиционные тригонометрические функции связаны с окружностью.

* * *

Все эти примеры говорят об общем результате, поэтому мы можем утверждать, что параллельные прямые на гиперболической плоскости в малых областях не отличаются от евклидовых параллельных прямых. С другой стороны, в этих вычислениях использовались гиперболические тригонометрические функции — особые аналоги традиционных функций синуса и косинуса. Они называются гиперболическим синусом и гиперболическим косинусом. Добро пожаловать в гиперболическую тригонометрию.

Гиперболическая тригонометрия

Работая над своими сложными математическими теориями, Бойяи и Лобачевский вывели тригонометрические выражения для гиперболической геометрии. Удивительным является тот факт, что, как и все остальное, они сделали это независимо друг от друга. Это свидетельствует об их гениальности, но также показывает, что результаты, которые они получили, действительно являются правильными.

Соотношения, выведенные Бойяи и Лобачевским, в малых областях могут быть сведены к формулам классической тригонометрии, но в других случаях они характеризуют новые, совершенно неисследованные миры.

Для переменной х гиперболический синус и гиперболический косинус определяются следующим образом:

Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:

th x = shx/chx

Здесь

мы вкратце напомним так называемую теорему синусов.

В треугольнике со сторонами а, b и с и с углами А, В и С

справедливо следующее соотношение:

a/sin A = b/sin В = c/sin С

Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:

sin A/sha = sin B/sh b = sin С/sh c

Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:

и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.

Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что

ch(x + у) = chchy + shshy

аналогично традиционному выражению

cos(x + у) = coscosy + sinsiny

* * *

ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ

В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin2x + cos2x 1. Аналогом в гиперболической тригонометрии является следующее тождество:

ВОПРОС ТЕРМИНОЛОГИИ

В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х2 + у2 = 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х2 + у2 = 1. Такое уравнение называется параметрическим уравнением окружности.

Если вместо круга мы возьмем гиперболу, график функции х2у2 = 1, то х ch t и у = sh t удовлетворяют соотношению ху2 = 1. Это уравнение называется «уравнением гиперболы».

Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.

Поделиться:
Популярные книги

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Землянка для двух нагов

Софи Ирен
Фантастика:
космическая фантастика
5.00
рейтинг книги
Землянка для двух нагов

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Лейтенант космического флота

Борчанинов Геннадий
1. Звезды на погонах
Фантастика:
боевая фантастика
космическая фантастика
космоопера
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Лейтенант космического флота

Боярышня Дуняша 2

Меллер Юлия Викторовна
2. Боярышня
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Боярышня Дуняша 2

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор