Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:

* * *

Что касается тангенсов, то можно показать, что

аналогично традиционному выражению

* * *

ЕВКЛИДОВА ТРИГОНОМЕТРИЯ

Тригонометрические тождества для суммы

и разности выглядят следующим образом:

sin(x + у) = sincosy + cossiny

cos(x + у) = coscosy — sinsiny

sin(x — y) = sincosy — cossiny

cos(x — y= coscosy + sinsiny

* * *

РЕШЕНИЕ ГИПЕРБОЛИЧЕСКОГО ТРЕУГОЛЬНИКА ПО ЕГО УГЛАМ

Пусть в гиперболическом треугольнике даны внутренние углы А = 8°, В = 22° и С = 40°. Надо найти угловой дефект и длины сторон треугольника.

Угловой дефект считается по формуле 180° — (8° + 22° + 40°) = 110°. Для вычисления длин сторон мы воспользуемся гиперболической теоремой косинусов и получим

Это позволяет нам вычислить значение а. Для этого воспользуемся калькулятором и посчитаем функцию, обратную гиперболическому косинусу. Получим значение 2,642857562. Далее

что дает нам длину b = 3,628644458. И наконец

К счастью, современные калькуляторы имеют эти функции, и расчеты можно делать без утомительных промежуточных вычислений.

* * *

Аналогично можно проверить другие соотношения с помощью определений гиперболических синуса и косинуса.

По таблице традиционных тригонометрических тождеств можно составить аналогичные соотношения гиперболической геометрии. Просто надо от функций sinх и cosх перейти к гиперболическим функциям shх и chх соответственно, внося необходимые поправки, поскольку, как мы видели, разница состоит не только в обозначениях. Необходимо, например, изменить знак каждого члена, содержащего произведение двух гиперболических синусов.

Это простое правило позволяет получить соотношения для гиперболической тригонометрии из их евклидовых аналогов:

sh(x + у) = shchy + chshy

sh(x — у) = shchy — chshy

ch(x + y) = chchy + shshy

ch(x — y) = chchy — shshy

Классическая и гиперболическая тригонометрии

Как мы видели, гиперболическая тригонометрия похожа на традиционную,

изучаемую в школе: обе имеют аналогичные соотношения. Приведенные ниже выражения содержат функции из обеих тригонометрий.

Рассмотрим треугольник с углами А, В и С и сторонами а, b и с, как показано на рисунке:

Для него справедливы следующие соотношения:

1) гиперболическая теорема косинусов для углов:

cosА = —cosВ·cosС + sinВ·sinС·chа;

2) гиперболическая теорема косинусов для сторон:

chа = chb·chсshb·shс·cosА;

3) cosА = chа·sinВ;

4) /2 = .

Приведенные выше выражения также справедливы, если мы заменим а, Ь, с и А, В, С на Ь, с, а и В, С, А соответственно в результате так называемой круговой перестановки. Таким образом мы можем составить полную таблицу соотношений между традиционной и гиперболической тригонометриями.

Глава 6

Эллиптическая геометрия

Имя немецкого математика Бернхарда Римана вписано большими буквами в историю математики. Эллиптическая геометрия — это удивительное детище его математического гения. Именно он представил прямые линии на таких поверхностях, как шар или мяч для регби, в виде окружностей.

Третья геометрия

Поверхность эллипсоида наиболее часто используется для визуализации и интерпретации эллиптической геометрии, отсюда и термин «эллиптическая геометрия».

Чтобы наиболее ясно продемонстрировать свойства этой геометрии, мы рассмотрим поверхность сферы, которая представляет собой самый простой, частный случай эллипсоида.

С помощью эллипсоида можно представить эту геометрию в очень интересной форме. Рассмотрим сначала более подробно поверхность эллипсоида.

* * *

ЭЛЛИПС

Эллипсом называется такая кривая, сумма расстояний от любой точки которой до двух фиксированных точек (так называемых фокусов) является постоянной

Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.

* * *

Эллипсоид получается путем вращения эллипса вокруг одной из его осей симметрии. Эллипсоид напоминает апельсин или лимон, а также планету Земля. Земля на самом деле является не сферой, а эллипсоидом, так как она приплюснута на полюсах. Однако для простоты мы будем считать земной шар идеальной сферой.

Поделиться:
Популярные книги

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Измена. Тайный наследник. Том 2

Лаврова Алиса
2. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник. Том 2

Отражение первое: Андерсы? Эвансы? Поттеры?

Linnea
Фантастика:
фэнтези
5.00
рейтинг книги
Отражение первое: Андерсы? Эвансы? Поттеры?

Интриги двуликих

Чудинов Олег
Фантастика:
космическая фантастика
5.00
рейтинг книги
Интриги двуликих

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Отчий дом. Семейная хроника

Чириков Евгений Николаевич
Проза:
классическая проза
5.00
рейтинг книги
Отчий дом. Семейная хроника

Вкус ледяного поцелуя

Полякова Татьяна Викторовна
2. Ольга Рязанцева
Детективы:
криминальные детективы
9.08
рейтинг книги
Вкус ледяного поцелуя

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Кротовский, вы сдурели

Парсиев Дмитрий
4. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Кротовский, вы сдурели

Неласковый отбор Золушки-2. Печать демонов

Волкова Светлана
2. Попала в сказку
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Неласковый отбор Золушки-2. Печать демонов

Всадник Системы

Poul ezh
2. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадник Системы