Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:

Каждая из сторон представляет собой дугу большого круга. Используя формулу для длины дуги, получим:

(·R) = (/2)·6350 = 9 974,2625 км

Этот же результат можно получить и другим способом: разделить длину большого круга на четыре (напомним, что длина окружности составляет 2R):

(6350)/4 = 9974,2625 км.

Ясно, что ту же процедуру можно повторить для Луны, радиус которой равен 1736 км.

* * *

ДЛИНА ДУГИ КРУГОВОГО СЕКТОРА

Для части окружности с центром O и радиусом r, изображенной на рисунке, обозначим угол, измеряемый, как правило, в радианах, а с — дугу между точками А

и B. Тогда длина дуги выражается следующим образом: с = ·r.

Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.

* * *

Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками А и В на сферической поверхности из всех окружностей, проходящих через эти точки и расположенных на этой сфере, геодезической линией является большой круг. Другими словами, геодезическая линия получается путем пересечения сферы плоскостью АОВ. Таким образом, геодезическим отрезком между точками А и В является меньшая из дуг большого круга, проходящего через А и В. Обратите внимание, что случай с этим кругом — единственный, когда А и В не являются диаметрально противоположными точками.

В геометрии на сфере прямыми линиями являются дуги больших кругов. Таким образом, параллельные линии не существуют, так как большие круги всегда пересекаются в диаметрально противоположных точках. Для наглядности достаточно взглянуть на дольки очищенного апельсина.

* * *

ПОВЕРХНОСТЬ ЗЕМЛИ

Является ли единственным кратчайший путь между двумя европейскими столицами, например, между Лондоном и Парижем? Ответ на этот вопрос положителен: существует только одна геодезическая линия, соединяющая эти города. Аналогично, уникален ли маршрут между Северным и Южным полюсами? Здесь ответ отрицательный: существует бесконечное количество геодезических линий, соединяющих эти две точки, так как они диаметрально противоположны.

* * *

Мир сферических треугольников

Мир сферических треугольников иллюстрирует много математических свойств эллиптической геометрии. Поэтому стоит его рассмотреть подробнее. Для начала рассмотрим на сфере радиуса R сферический треугольник с вершинами А, В, С и сторонами а, Ь, с.

Сумма углов и сумма сторон сферического треугольника

Одним из результатов, о котором мы уже говорили, является тот факт, что сумма углов сферического треугольника больше 180°, или радиан, и меньше 360° = 2 радиан. То есть

A + В + С < 2.

Таким образом, можно сказать, что сумма сторон сферического треугольника удовлетворяет неравенству:

+ bc < 2··R.

Площадь
треугольника

Величина (А + В + С — 180°) называется сферическим избытком, так что площадь сферического треугольника S находится по следующей формуле:

где R — радиус сферы.

Следует отметить, что чем больше площадь треугольника, тем больше сумма его углов. Кроме того, чем больше площадь треугольника, тем больше сферический избыток, и именно поэтому больше значение А + В + С.

Длина окружности

В евклидовой геометрии имеется следующий результат: длина окружности радиуса r равна 2r. В эллиптической геометрии этот результат выглядит следующим образом: длина окружности радиуса r всегда больше, чем 2r.

* * *

ПЛОЩАДЬ СФЕРИЧЕСКОГО ТРЕУГОЛЬНИКА НА ПОВЕРХНОСТИ ЗЕМЛИ

Давайте решим следующую задачу: какова должна быть площадь сферического треугольника на поверхности Земли, чтобы сумма его углов была больше 180° хотя бы на 1°? По формуле для площади сферического треугольника имеем:

Мы хотим найти значение S, такое что

Отсюда получаем

Выражая и подставляя 6350 км вместо R, имеем

Следовательно, у любого треугольника на поверхности Земли, площадь которого равна или больше 703739,6319 км2, сумма углов будет превышать 180° по крайней мере на 1°.

* * *

Теоремы синусов и косинусов

В сферической геометрии теоремы синусов и косинусов выглядят следующим об разом:

Теорема косинусов также работает после так называемой круговой перестановки (замены а на Ь, b на с и с на а).

Теорема Пифагора

И снова теорема Пифагора из евклидовой геометрии имеет свой аналог в другом геометрическом пространстве. Но в сферической геометрии теорема Пифагора ведет себя несколько иначе. В этой геометрии она формулируется следующим образом: пусть R — радиус сферы, с — гипотенуза, а и — две другие стороны сферического треугольника, а угол С — прямой угол, тогда:

Поделиться:
Популярные книги

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Измена. Тайный наследник. Том 2

Лаврова Алиса
2. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник. Том 2

Отражение первое: Андерсы? Эвансы? Поттеры?

Linnea
Фантастика:
фэнтези
5.00
рейтинг книги
Отражение первое: Андерсы? Эвансы? Поттеры?

Интриги двуликих

Чудинов Олег
Фантастика:
космическая фантастика
5.00
рейтинг книги
Интриги двуликих

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Отчий дом. Семейная хроника

Чириков Евгений Николаевич
Проза:
классическая проза
5.00
рейтинг книги
Отчий дом. Семейная хроника

Вкус ледяного поцелуя

Полякова Татьяна Викторовна
2. Ольга Рязанцева
Детективы:
криминальные детективы
9.08
рейтинг книги
Вкус ледяного поцелуя

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Кротовский, вы сдурели

Парсиев Дмитрий
4. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Кротовский, вы сдурели

Неласковый отбор Золушки-2. Печать демонов

Волкова Светлана
2. Попала в сказку
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Неласковый отбор Золушки-2. Печать демонов

Всадник Системы

Poul ezh
2. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадник Системы