Чтение онлайн

на главную - закладки

Жанры

Начало бесконечности. Объяснения, которые меняют мир
Шрифт:

Всякий раз обращаясь к бесконечности, мы опираемся на бесконечную сферу применимости какой-либо идеи. Всегда, когда идея бесконечности имеет смысл, это связано с тем, что существует объяснение, каким образом некий конечный набор правил для манипулирования конечными символами ссылается на нечто бесконечное. (Повторю, что это также лежит в основе всех остальных наших знаний.)

В математике бесконечность изучается посредством бесконечных множеств (то есть множеств с бесконечным числом элементов). Определяющее свойство бесконечного множества заключается в том, что некоторая его часть содержит столько же элементов, сколько все оно целом. Возьмем, например, натуральные числа:

В

верхней строке на рисунке каждое натуральное число встречается ровно один раз. В нижней строке содержится только часть этого множества: натуральные числа, начиная с 2. Чтобы показать, что в этих двух множествах одинаковое число элементов, на рисунке между ними установлено соответствие, которое математики называют «взаимно однозначным».

Чтобы проиллюстрировать некоторые интуитивные вещи, от которых приходится отказаться, рассуждая о бесконечности, математик Давид Гильберт придумал мысленный эксперимент. Он представил себе гостиницу с бесконечным числом номеров: отель «Бесконечность». Номера пронумерованы с помощью натуральных чисел, начиная с 1 и заканчивая… Чем же?

Число на двери последнего номера отеля – не бесконечность. Во-первых, последнего номера вообще нет. Мысль о том, что в любом пронумерованном множестве гостиничных номеров есть элемент с наибольшим числом на двери, – это первое интуитивное представление из повседневной жизни, которое придется отбросить. Во-вторых, в любой конечной гостинице, в которой номера пронумерованы от 1, будет один под номером, равным общему их числу, а также другие с близкими номерами: если бы номеров было десять, на двери одного из них стояло бы десять, а среди остальных был бы номер девять. Но в отеле «Бесконечность», в котором число номеров бесконечно, порядковые номера их всех бесконечно далеки от бесконечности.

Теперь представьте, что отель заполнен. В каждом номере может жить один и только один человек. Когда «заполнена» конечная гостиница, это все равно что «свободных мест нет». Но в отеле «Бесконечность» место найдется всегда. Одно из условий пребывания в нем – постояльцам придется сменить номер, когда администратор их об этом попросит. По прибытии нового гостя по системе оповещения проходит сообщение: «Просим всех постояльцев немедленно переехать в номер, на двери которого число на единицу больше, чем на двери занимаемого вами сейчас номера». Таким образом, по схеме, представленной на первом в этой главе рисунке, тот, кто жил в номере 1, переезжает в номер 2, а тот, кто жил в номере 2, – в номер 3 и так далее. Что же происходит в последнем номере? Но ведь последнего нет, и такого вопроса просто не возникает. Вновь прибывший заселяется в номер 1. Бронировать место в отеле «Бесконечность» не нужно.

Очевидно, в нашей Вселенной не может быть такого места, как отель «Бесконечность», поскольку в нем нарушается несколько законов физики. Однако это математический мысленный эксперимент, поэтому единственное ограничение на воображаемые законы физики – их непротиворечивость. И из-за этого требования непротиворечивости они контринтуитивны: в интуитивных вещах, касающихся бесконечности, часто отсутствует логика.

Переезжать таким образом немного неудобно, хотя все номера одинаковые, и их убирают перед заселением нового постояльца. Но людям нравится останавливаться в «Бесконечности». Дело в том, что отель недорогой, всего доллар за ночь, но при этом невероятно роскошный. Как это удается? Каждый день, собрав по доллару за комнату, администратор распределяет доход следующим образом. Деньги, полученные от жильцов из номеров 1–1000, идут на шампанское и клубнику для постояльцев, на оплату услуг горничных и остальные расходы, но только для номера 1. На деньги, полученные от жильцов из номеров 1001–2000, оплачивается все то же самое для номера 2 и так далее. Таким образом, на каждый номер каждый день приходится товаров и услуг на сумму в несколько сотен долларов, но при этом удается получить и прибыль, и все из расчета одного доллара за сутки.

Слава отеля ширится, и однажды на местную станцию приезжает бесконечно длинный поезд с бесконечным числом пассажиров, которые хотели бы остановиться в отеле. На бесконечно много оповещений по системе громкой связи ушло бы слишком много времени (к тому же по гостиничным правилам каждого постояльца можно просить совершить то или иное действие лишь конечное число раз в день), но это

не важно. Администратор просто сообщает: «Просим всех постояльцев немедленно переехать в номер с числом на двери в два раза больше, чем число на двери вашего нынешнего номера». Очевидно, что это не составит труда, и в итоге занятыми окажутся только четные номера, а в нечетные можно будет заселять вновь прибывших. Этого как раз хватит, чтобы принять бесконечно много новых постояльцев, потому что нечетных чисел ровно столько же, сколько натуральных, что иллюстрируется следующим рисунком:

Таким образом, первый вновь прибывший селится в номер 1, второй – в номер 3 и так далее.

Затем в один прекрасный день на ту же станцию прибывает бесконечное число бесконечно длинных поездов, целиком забитых желающими остановиться в отеле. Но администраторов это не пугает. Они просто немного усложняют объявление, с которым читатели, разбирающиеся в математической терминологии, могут ознакомиться в сноске [45] . В итоге номеров хватает всем.

45

Сначала постояльцы слышат такое объявление: «Для каждого натурального N просим постояльца из номера N немедленно переехать в номер N (N+1) / 2». А затем: «Для всех натуральных N и M просим N– го пассажира M– го поезда заселиться в номер [(N+M) 2 + N – M] / 2». – Прим. автора.

Однако переполнить отель «Бесконечность» математически возможно. В 1870-е годы Кантор сделал ряд замечательных открытий и среди прочего доказал, что не все бесконечности равны. В частности, бесконечность континуума – число точек на отрезке (которое равно числу точек во всем пространстве или в пространстве-времени) – гораздо больше, чем бесконечность натуральных чисел. Для доказательства этого факта Кантор продемонстрировал, что не существует взаимно однозначного соответствия между натуральными числами и точками отрезка: у этого множества точек порядок бесконечности выше, чем у множества натуральных чисел.

Вот один из вариантов его доказательства, основанное на так называемом диагональном методе. Представьте себе колоду карт: ее толщина – один сантиметр, а карты такие тонкие, что на каждое «действительное число» сантиметров между 0 и 1 приходится по карте. Действительные числа можно определить как десятичные дроби, лежащие в этих пределах, например, 0,7071…, где многоточие означает, что дальше знаков может быть бесконечно много. Тогда невозможно раздать эту колоду по одной карте в каждый номер отеля «Бесконечность». Предположим, что колоду все же удалось распределить таким образом, и докажем, что это приводит к противоречию. Каждому номеру должна соответствовать карта, как, например, в таблице ниже. (Конкретные числа в ней не играют роли, поскольку мы доказываем, что действительные числа нельзя распределить по натуральным ни в каком порядке.)

Обратим внимание на бесконечную последовательность цифр, выделенных полужирным шрифтом – 6996…. А теперь рассмотрим десятичное число, построенное следующим образом: оно начинается с нуля, затем идет десятичная запятая, а затем произвольные цифры с тем лишь исключением, что каждая из них должна отличаться от соответствующей по номеру цифры в бесконечной последовательности 6996…. Например, можно выбрать такое число: 0,5885…. Карта с построенным таким образом номером не могла попасть ни в один номер в отеле, потому что первой цифрой она отличается от карты, отправленной в номер 1, второй – от карты, попавшей в номер 2, и так далее. Таким образом, она отличается от всех карт, присвоенных номерам в отеле, что противоречит исходному предположению о том, что распределены были все карты.

Поделиться:
Популярные книги

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Взлет и падение третьего рейха (Том 1)

Ширер Уильям Лоуренс
Научно-образовательная:
история
5.50
рейтинг книги
Взлет и падение третьего рейха (Том 1)

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Интернет-журнал "Домашняя лаборатория", 2007 №6

Журнал «Домашняя лаборатория»
Дом и Семья:
хобби и ремесла
сделай сам
5.00
рейтинг книги
Интернет-журнал Домашняя лаборатория, 2007 №6

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2