Настольная игра «Футбол на бумаге»
Шрифт:
При дальнейшей игре, заняв полевое пересечение, нужно от него «оттолкнуться», т.е. каждый раз будут заниматься две грани: 6:2=2x3
Т.е. после трёх прохождений через полевое пересечение ты займёшь все грани и дальнейший проход в такое пересечение невозможен. То есть, в полевом пересечении нельзя попасть в тупик,
5, 6 – околоворотные пересечения (c2; c10; e2; e10; d2; d10):
Часть рёбер, исходящих от данных пересечений, соединена с воротными пересечениями, т.е. с пересечениями, заняв которые одной из сторон автоматически засчитывается поражение. Таким образом, условие тупиковости (нечётности) для околоворотных пересечений не может быть выполнено и они являются чётными.
Если бы в ФУТБОЛЕ НА БУМАГЕ отсутствовало правило гола – то 6 пересечения (c2;c10;e2;e10) превратились бы в тупиковые (поскольку от них отходят пять незанятых граней), а 5 пересечения (d2;d10) остались бы также чётными и были бы простыми полевыми пересечениями.
Теперь давай представим результаты в графическом виде (нечётные и воротные пересечения изображены красным цветом, чётные – чёрным):
Таким образом, если партия ведётся строго по правилам и доигрывается до победного конца – последним занимается одно из красных пересечений.
6). Следствие нечётности пересечений:
а). Введём определение изолированной группы:
изолированная группа – это конструкция, при которой проход к обоим воротам полностью перекрыт. Пример изолированной группы показан на рисунке 17.
б). Внутри изолированной группы всегда есть хотя бы одно нечётное пересечение. Это вполне очевидно – ведь если проход к обоим воротам полностью перекрыт, то в итоге одна из сторон попадёт в тупик, т.е. займёт тупиковое (нечётное) пересечение.
В примере представленном на рисунке 17 таким пересечением является центр.
Дано: симметричное футбольное поле произвольного размера
Доказать: на данном поле нельзя построить конструкцию следующего вида:
Доказательство:
Данное утверждение справедливо для футбольных полей любых конфигураций, необходимо только, чтобы совпадала «внутренняя геометрия».
7). Дано: ты договариваешься с противником о проведении матча.
Определить: на каком количестве партий в матче тебе нужно настаивать, чтобы твои шансы на успех были максимальными.
Решение:
Матч может состоять из нечётного или чётного количества партий. Поскольку в отдельной футбольной партии ничьи быть не может, то в нечётном матче всегда определяется победитель. В матче же, состоящем из чётного количества партий игроки могут сыграть в ничью. Для победы в матче требуется выиграть абсолютное большинство партий:
– для нечётного матча – k партий из n, где (n+1)/2 k n;
– для чётного матча – f партий из m, где m/2+1 f m
Введём несколько понятий:
– нечётный матч – матч, состоящий из нечётного количества партий.
– чётный матч – матч, состоящий из чётного количества партий.
Определение «формулы» матча зависит от нескольких обстоятельств:
1). Тебе нужна победа в матче или тебя устроит и ничья (т.е. игра будет вестись на победу или на непоражение); т.к. выиграть матч, состоящий из нечётного количества партий N, меньше шансов, чем не проиграть матч, состоящий из чётного количества партий (N+1).
Для наглядности можно привести простой пример:
Перед тобой дилемма – выбирать матч, состоящий из одной или из двух партий. Очевидно, что более надёжный вариант – это две партии, поскольку даже если ты проиграешь в первой партии – возможно тебе удастся отыграться во второй и свести матч вничью. Но, если тебе в силу тех или иных обстоятельств нужна только победа, конечно лучше играть одну партию. Таким образом, здесь всё зависит от твоей цели.