Чтение онлайн

на главную - закладки

Жанры

Настольная игра «Футбол на бумаге»
Шрифт:

2). Знаешь ли ты свои шансы на победу в одной партии.

3). Если знаешь то каковы они (меньше или больше, чем у противника, или равны).

1. Допустим, что ты знаешь свои шансы на победу в отдельной партии:

Н1(n) – вероятность не проиграть в матче, состоящем из n партий, для первого игрока

Н2(n)

вероятность не проиграть в матче, состоящем из n партий, для второго игрока

В1(n) – вероятность выиграть в матче, состоящем из n партий, для первого игрока

В2(n) – вероятность выиграть в матче, состоящем из n партий, для второго игрока

Д(n) – вероятность того, что игроки сыграют в ничью матч из n партий (n – всегда чётное)

1.1. Вероятность того, что матч выиграет один из игроков или он закончится в ничью (если это чётный матч) равна 1. Пускай в нашем небольшом исследовании 1 будет равна 729 (36) шансам.

Допустим, что: Н1(1)=В1(1)=1/3; тогда Н2(1)=В2(1)=2/3. Т.е. вероятность выиграть для первого игрока в одной партии равна 243 шансам, для второго – 486 шансам. Тогда:

Выводы из таблиц 1 и 2:

1). Шансов выиграть в нечётном матче из n партий больше, чем в чётном из (n+1) партий;

2). Шансы на выигрыш у более слабого игрока с увеличением количества партий «тают на глазах», а у более сильного игрока наоборот возрастают;

3). Шансов не проиграть в чётном матче из n партий больше, чем в нечётном из (n– 1) партий;

4). Шансы на непроигрыш у более слабого игрока с увеличением количества партий также становятся меньше, а у более сильного

игрока возрастают.

1.2. Допустим, что: Н1(1)=В1(1)=Н2(1)=В2(1)=1/2. Т.е. шансы игроков на выигрыш в отдельной партии равны.

1.2.1. Для нечётного матча (n – нечётное число):

1=В1(n)+В2(n), т.к. В1(1)=В2(1), тогда и В1(n)=В2(n)=1/2; т.е. вероятность выиграть у каждого из игроков в нечётном матче постоянна и равна 1/2.

1.2.2. Для чётного матча (n – чётное число):

1= В1(n)+В2(n)+Д(n), т.к. В1(1)=В2(1), тогда и В1(n)=В2(n)=Х

1=Х+Х+Д(n)=2Х+Д(n)

2Х=1-Д(n)

Х=(1-Д(n))/2=1/2-Д(n)/2

Х<1/2

В1(n),В2(n)<1/2; т.е. вероятность выиграть у каждого из игроков в чётном матче меньше 1/2.

Х+Д(n)=1-Х, т.к. Х<1/2, то Х+Д(n)>1/2; т.е. вероятность не проиграть у каждого из игроков в чётном матче больше 1/2.

Однако вероятности выигрыша и непроигрыша непостоянны. Вероятность сыграть в ничью с увеличением количества партий уменьшается, следовательно, вероятность выигрыша увеличивается, а непроигрыша уменьшается. Обе эти величины стремятся к 1/2. Т.е. больше всего шансов не проиграть у игроков в матче из двух партий:

Поделиться:
Популярные книги

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Ринсвинд и Плоский мир

Пратчетт Терри Дэвид Джон
Плоский мир
Фантастика:
фэнтези
7.57
рейтинг книги
Ринсвинд и Плоский мир

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Феномен

Поселягин Владимир Геннадьевич
2. Уникум
Фантастика:
боевая фантастика
6.50
рейтинг книги
Феномен

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Инквизитор тьмы 3

Шмаков Алексей Семенович
3. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор тьмы 3

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых