Неизвестное наше тело
Шрифт:
Открытия Иствилла и Бертранпети прояснили историю «гена цистофиброза». Но ответ на поставленный выше вопрос: как этот ген сохранился в ходе эволюции? — они весьма усложнили. В самом деле, если вредный ген возник уже 50 с лишним тысяч лет назад, то за это время естественный отбор должен был бы, казалось, устранить из человеческих рядов всех его носителей — разве что они обладали каким-то дополнительным преимуществом по сравнению с теми, у кого испорченного гена не было вообще. И американский физиолог Габриэль решил поискать, не мог ли ген цистофиброза сыграть какую-то благодетельную роль в ходе эволюции. Иными словами, выяснить, нет ли и у этого гена каких-либо достоинств, которые могли бы быть продолжением — и компенсацией — его недостатков.
Габриэлю помог тот факт, что цистофиброз, как мы уже сказали, влечет за собой закрытие мембранных канальцев и прекращение выхода жидкости из клетки наружу. Исследователь
Не может ли быть так, что ген цистофиброза, закрывая канальцы, выводящие жидкость из клеток, одновременно препятствует и появлению диареи? Это свое предположение Габриэль решил проверить на мышах. Он взял мышей с привитым геном цистофиброза и ввел им в желудок еще и холерный токсин. Вскрыв затем своих подопытных, он обнаружил, что те мыши, у которых ген цистофиброза наличествует в обеих нитях ДНК, материнской и отцовской, жидкости вообще не выделяли, как им и положено, — ведь у них мембранные канальцы были забиты. А вот мыши, у которых испорченный ген присутствовал только в одной из нитей ДНК, клеточную жидкость продолжали выделять, хотя и в половинном количестве, — у них была забита только половина канальцев.
Если предположить, что в человеческом организме имеет место то же самое, мы приходим к выводу, что те первобытные люди, которые были носителями скрытого гена цистофиброза (то есть имели его только в одной нити своей ДНК), заразившись холерой, выделяли половину нормального количества клеточной жидкости. Этого было вполне достаточно, чтобы избавиться от холерного токсина, и в то же время меньше, чем необходимо для возникновения кровавой диареи. Иными словами, они были защищены от холеры лучше, чем другие люди, — ведь у тех неминуемо появлялась диарея, ведущая к обезвоживанию и смерти. «В былые времена, — говорит Габриэль, — когда население Европы было куда меньше, каждая эпидемия холеры могла истреблять значительную часть европейцев, но не затрагивала людей, носивших в своих ДНК всего одну копию мутантного гена цистофиброза. А это позволяло такому гену сохраняться и размножаться в популяции».
Так-то оно, быть может, и так, но дело в том, что первые эпидемии холеры в Европе отмечены лишь с 1817 года. А что же помогало гену цистофиброза раньше? Габриэль полагает, что этот ген помогал своим носителям справляться с другими бактериями, способными вызвать диарею, — например, с кишечной палочкой и сальмонеллой. Но если Габриэль прав и этот ген оказывает людям такие благодеяния, почему он «не прижился» в Азии? Ведь та разновидность кишечной палочки, которая вызывает диарею, распространена по всему миру и ежегодно убивает почти полтора миллиона детей. А кроме того, тот вид мутации, который изучали Иствилл и Габриэль, — отнюдь не единственная причина цистофиброза. Сегодня известны уже по меньшей мере 400 других разновидностей порчи исходного гена, ведущих к этой ужасной болезни. Это означает, что данный ген подвержен особо частым мутационным порчам. Но если его мутации происходят так часто и легко, почему они не появились за истекшие 50–100 тысяч лет (со времени ухода людей из Африки) и среди прочих рас, в остальных частях света?
На этот вопрос попытался ответить американский физиолог Поль Квинтон. По его мнению, скрытый ген цистофиброза не выжил за пределами Европы, потому что в жарком климате он проявляет другой недостаток, который перевешивает его выгоды при возникновении диареи, — он вызывает выделение слишком соленого пота. Вспомним, что этот ген, даже в скрытом состоянии (когда он находится лишь в одной нити ДНК), вызывает закупорку по меньшей мере половины мембранных канальцев. В результате осмос не может высосать из клеток достаточно жидкости, чтобы в полной мере разбавить накопившиеся снаружи, в межклеточной жидкости, соли хлора. Выделяющийся из организма пот оказывается избыточно соленым в сравнении с нормальным. Врачи и сейчас считают соленый пот первым признаком цистофиброза. Соль необходима организму для нормальной жизнедеятельности; ее выход вместе с потом ведет к понижению солевого баланса и нарушению жизнедеятельности. Особенно резко этот недостаток сказывается
Иными словами, что хорошо, а что плохо для выживания, решают в конечном счете локальные условия. Но в любом случае эволюция никогда не одаряет одним только добром — она всегда вынуждает нас принимать вместе с ним и неизбежное зло.
Альцгеймер — поиски и споры
Два главных врага человека, две главные причины смертности людей — это, несомненно, сердечно-сосудистые болезни и рак. В последнее время в связи с ростом длительности жизни и, как следствие, — быстрым ростом числа пожилых людей к этим двум врагам присоединился третий — болезнь Альцгеймера. Если какой-то призрак и бродит по нашей состарившейся планете, то это — призрак Альцгеймера.
Упрямая штука — эта болезнь Альцгеймера. Открыта она была Алоизом Альцгеймером еще в 1906 году, а фундаментальный прорыв в ее понимании произошел лишь в 1991 году, когда Харди и Бисоп нашли, что эта болезнь связана с аномалией одного из белков, производимого нейронами, — амилоидного белка. Это привело к развертыванию поистине огромного фронта научных исследований, но, увы, — бои на этом фронте долгое время шли позиционные, и лишь недавно наметились важные продвижения как в научном, так и в практическом лечебном плане. Самое время об этом рассказать. Но для лучшего понимания рассказа стоит сначала навести некоторый порядок в наших знаниях. Что знаем мы, точнее — что знает сегодня наука о болезни Альцгеймера (далее сокращенно БА)? Самое надежное знание состоит в том, что болезнь эта представляет собой один из видов старческого слабоумия, а потому вероятность заболевания ею, как правило, растет с возрастом. Замечу, однако, что далеко не всякая старческая забывчивость — это признак БА. Совсем недавно, в середине 2013 года, группа известного биолога, лауреата Нобелевской премии Канделя, изучив посмертные срезы мозга людей, страдавших от старческой забывчивости, и людей, умерших от БА, показала, что у тех и других были поражены совершенно разные участки гиппокампуса (так называется отдел мозга, заведующий памятью). Более того, этой же группе удалось, с помощью инъекций определенного белка, обратить вспять процесс забывания приобретенных навыков у состарившихся мышей. Мыши вспомнили забытые ими навыки прохождения лабораторного лабиринта.
К сожалению, пока это удалось сделать только с мышами.
Впрочем, оставим обычную старческую забывчивость и вернемся к БА. Как я уже сказал, в 1991 году Харди и Бисоп нашли, что в мозгу умерших от этой болезни людей обнаруживаются отложения амилоидного белка. Эти отложения, или «бляшки», покрывают поверхность нервных клеток (подобно тому, например, как холестероловые бляшки покрывают изнутри стенки артерий) и, как показало последующее изучение, состоят из неправильно свернутых молекул этого белка. Долгие годы дальнейших исследований выявили, как образуются эти «неправильные» молекулы. В нейронах, наряду со всеми их прочими белками, производится также некий белок, который ученые назвали «белок — предшественник амилоида», или сокращенно — АРР. Это длинная молекула, которая пронизывает мембрану нейрона. Во всех нейронах существуют особые ферменты (тоже белки), именуемые «секретазами», задача которых — отрезать тот кусок АРР, который находится вне нейрона. Внутренняя (меньшая) часть АРР остается в нейроне и играет там некую важную роль, а более длинная — она имеет от 36 до 43 химических звеньев и называется «бета-амилоил», или «Абета», — остается на мембране снаружи и, в принципе, должна быть в конечном счете убрана из мозга, как «мусор». И так оно действительно происходит со всеми таким «обрезками» — кроме некоторых. Увы, некоторые остатки не поддаются удалению, потому что по какой-то причине приобретают способность соединяться друг с другом, образуя большие бляшки, которые нарушают работу нейронов.
Затем сделали еще одно важное открытие — было подмечено, что такой способностью обладают только те наружные остатки АРР, которые имеют минимальную длину — 42 химических звена. Остатки длиной, скажем, 38 звеньев склеиваться практически не способны. Эту странную молекулярную загадку разгадали относительно недавно. Сначала выяснили, что при длине в 42 звена сохраняется участок, имеющий форму шпильки, а в феврале 2013 года профессор из Калифорнии Давид Теплов показал что именно такими «шпильками» молекулы Абета-42 сцепляются друг с другом. И когда такое сцепление идет слишком бурно, на мембранах нейронов образуются нерастворимые бляшки и возникает БА.