Неорационализм
Шрифт:
Классическая механика Ньютона — Лагранжа ввела важнейшее понятие числа степени свободы системы, которое определяется разностью между числом параметров и числом связей, наложенных на эти параметры. Если число степеней свободы равно нулю, или отрицательно, то система вообще не в состоянии двигаться (она перезавязана, так сказать), развития происходить не может. Если число степеней сво-боды равно единице, система может двигаться по единст-венной траектории, что легче всего себе представить, как движение точки в многомерном пространстве по некоторой кривой. Точка не может сойти с кривой, но закон движения точки по кривой может быть самым разным и определяется начальными условиями и воздействиями. При этом точка, в принципе может двигаться, как в ту, так и в другую сторо-ну по кривой, или даже туда-сюда, в за-висимости от внешних воздействий. Как
Здесь следует сделать оговорку. Понятие числа степеней свободы введено в механике для системы с абсолютно жест-кими связями. Помимо того, что ничего абсолютного вооб-ще не бывает и абсолютно жесткая связь, как и все прочие номинал - определения (Гл.1) нашего познания описывает лишь пустое множество, понятие абсолютно жесткой связи явля-ется приемлемым лишь для определенных механических систем, типа поезд — рельсы и т. п. Уже для механических систем, содержащих упругие элементы (например пружины) это понятие не пригодно не только абсолютно, но и практически. Тем более для не механических систем и особенно си-стемы — общество.
Однако это обстоятельство не отразится на выводах, сделанных выше, поскольку любые связи ограничивают свободу системы, и в случае системы с неабсолютно жесткими связями число степеней ее свободы попрежнему определится разницей числа параметров и числа связей, но вычи-таемое будет содержать всевозможные поправочные коэф-фициенты, обусловленные разнообразным характером неаб-солютно жестких связей. Легко видеть, что на сделанные выше заключения, касающиеся детерминизма, как уже было сказано, это не повлияет.
Итак, мы показали уже, опираясь на ньютоно-лагранжевскийподход к моделированию произвольных процессов, недостатки двух основных немодельных подходов к детерминизму. Но собственно модельный подход пока еще не сформулирован. Для того, чтобы сделать это, воспользуемся еще одним понятием ньютоно-лагранжевской механики, а именно понятием устойчивости движения. Это поня-тие играет решающую роль в предлагаемой модели, поэтому я остановлюсь на нем весьма подробно.
Прежде всего заметим, что точка в n-мерном пространстве, представляющая систему даже с n степенями свободы, в случае, если на нее нет никаких воздействий извне, дви-жется по единственной, вполне определенной траектории, и более того, по единственному закону. И траектория, и закон определены начальными условиями.
Если на такую точку есть определенное внешнее воздействие, то она также будет двигаться по определенной траекто-рии и по определенному закону (другим, естественно), определенным уже и начальными условиями и воздействием. В большинстве случаев, течение процессов не только не обходится без внешних воздействий; но именно ими и обусловлено. Так, например, процесс жизни на земле невозможен без воздействия солнечного излучения. Процесс обра-ботки детали на станке (система деталь — станок) осуществляется в результате воздействия энергии, подводимой к станку и т. д. В принципе, в природе ль, в обществе ль, не может быть абсолютного отсутствия внешних воздействий на систе-му. Всякая система является подсистемой какой-то большей системы, а та, в свою очередь, еще большей и так далее, и процессы, протекающие
Более того, на любой рассматриваемый процесс в прин-ципе оказывает влияние (единовременно и разновременно) бесчисленное множество внешних воздействий, например, излучения звезд и их же поля тяготения. При этом действие звезд изменяется непрерывно в связи хотя бы с изменением положения их относительно процесса.
Естественно, моделируя процесс мы не можем учитывать всех воздействий порознь. Поэтому мы выделяем из них основные, определяющие, главные или как угодно, влияние ко-торых описываем в модели, и случайные, влиянием которых, по крайней мере на первом этапе, пренебрегаем. Основные — это такие, результат действия которых достаточно велик и вероятность этого действия за время протекания процесса достаточно отлична от нуля. Что значит достаточно, зависит от того, с какой точностью и надежностью мы хотим описать процесс.
Разделение воздействий на неслучайные (основные) и случайные условно и диктуется задачей, которую мы себе ставим, и системой, которой мы ограничиваемся, моделируя процесс. Так, например, модели, описывающие процесс поле-та снаряда, изначально учитывали только воздействие на него пороховых газов и силы притяжения. Затем сопротив-ление воздуха. Все прочие воздействия: ветра, изменения плотности воздуха и т. д. относились к случайным и учиты-вались только через статистическую картину распределения отклонений попадания в цель, Однако, по мере развития балистики, не только теоретической, но и средств измерения и вычислительной техники, стали строить модели, учитываю-щие ветер, изменения плотности воздуха и многое другое уже как неслучайные факторы. В результате точность стрельбы (описания процесса, следовательно) значительно возросла хотя определенное рассеяние попаданий все же осталось. Последнее объясняется наличием еще бесконечного количества воздействий, которые остались в модели случайными, таких хотя бы, как притяжение звезд.
В связи с этим примером я хочу отметить некоторую ка-тегорию случайных внешних воздействий, которые мне понадобятся в дальнейшем. Дело в том, что мы моделируем, как правило, не один единственный процесс, а некий тип процессов. При этом каким-то параметрам мы придаем опре-деленное постоянное значение. В действительности же они никогда не бывают постоянны от процесса к процессу в дан-ном типе процессов. Случайные изменения таких параметров вызывают случайные изменения внешних воздействий, которые сами по себе мы ввели в модель как неслучайные. С точки зрения протекания процесса эти изменения эквивалентны случайным воздействиям. Так случайные отклонения в весе снаряда от стандартного вызывают изменения силы притяжения, равносильные случайному воздействию и т. д.
Другой пример условности разделения на неслучайные и случайные воздействия иллюстрирует влияние на это разделение перехода от меньшей системы к большей: попада-ние кометы в землю в рамках модели, описывающей процес-сы в околоземном пространстве — случайное событие. Но можно представить себе столь большую систему, охваты-вающую многие галактики со всеми их кометами, где ука-занное попадание не будет случайным, а будет предписы-ваемым на основе модели результатом процесса.
Возвращаемся к устойчивости. В связи с наличием слу-чайных внешних воздействий на системы и возникает вопрос об устойчивости движения, устойчивости процесса, текущего в системе. В принципе, система под любым, сколь угодно малым воздействием, изменяет свое движение, отходя от той траектории, по которой она бы двигалась, не будь этого воздействия (пусть сколь угодно мало).
Движение считается устойчивым, если в результате случайных внешних воздействий, не превышающих определенных, максимальное отклонение от траектории процесса, ко-торая имела бы место при отсутствии упомянутых воздейст-вий не превзойдет некоторой определенной величины.