Чтение онлайн

на главную - закладки

Жанры

Нестандартные задачи по математике в 3 классе
Шрифт:

Нужно нарисовать оба этапа соревнования:

Первая муха достигает потолка, когда вторая на половине пути к нему; первая возвращается к полу, когда вторая достигает потолка. Побеждает первая. Заметим, что несущественно, во сколько раз быстрее вторая муха ползет вниз, чем первая.

Ответ: Первая.

Задача 96. Перерисуй по клеткам фигуру АВСD. Убедись, что АВСD — квадрат, то есть что

все его стороны равны между собой и все углы — прямые.

Задача 97. Расшифруй ребус: 6 x 21 + 2 х х = х 958.

Достаточно написать пример столбиком, и все пропущенные цифры станут очевидными.

Ответ: 6721 + 237 = 6958.

Задача 98. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 6, 28, 145.

Второе число получается из первого так: прибавляем 1 и умножаем на 3. Третье из второго — прибавляем 1 и умножаем на 4. Четвертое из третьего — прибавляем 1 и умножаем на 5. Можно и дальше действовать так же, прибавляя к предыдущему числу 1 и умножая результат на множитель, увеличенный на 1.

Ответ: 1, 6, 28, 145, 876…

Задача 99. Две мухи соревнуются в беге. Они бегут от потолка к полу и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее первой, а вверх вдвое медленнее первой. Которая победит?

Достаточно попросить мух бежать в другом порядке — как в задаче 95. От этого их скорости не изменятся, а значит, не изменится и время бега. Впрочем, можно проследить ход соревнования и в данном порядке. Пока первая муха достигнет середины стены, вторая будет уже на полу. На обратном пути вторая муха пробежит четверть стены, пока первая достигнет пола. Первой останется бежать вверх целую стену, а второй — три четверти стены. Но скорость первой мухи теперь в два раза больше, и она успевает к цели раньше.

Ответ: Первая.

Задача 100. Какое число пропущено в следующем равенстве? (429 — _): (348 + 259) = 0.

Так как частное равно нулю, то делимое равно нулю. Получается, что 429 — = 0, а значит, пропущено число 429.

Ответ: 429.

Задача 101. 1 сентября 2001 г. — суббота. Какой день недели 1 сентября 2002 г.? Сделайте более общий вывод.

В данной задаче нужно выяснить:

1) сколько дней между 1 сентября 2001 г. до 1 сентября 2002 г. (так как эти годы невисокосные, то 365 дней);

2) каким днем является день «суббота + 365 дней» (так как 365 дней — это 52 недели плюс один день, то «суббота + 365 дней» — это

воскресенье).

Ответ: 1 сентября 2002 г. — воскресенье. Более общий вывод: невисокосный год продвигает календарь на один день недели.

Задача 102. В

субботу в 3 классе должно состояться четыре урока: два урока русского языка, математика и природоведение. Сколькими способами можно определить порядок следования этих предметов?

Лучше всего выписать все возможные расписания, вначале начинающиеся с РР, потом с РМ, потом с РП, потом с МР, потом с МП, потом с ПР, потом с ПМ:

РРМП, РРПМ, РМРП, РМПР, РПРМ, РПМР,

МРРП, МРПР, МПРР, ПРРМ, ПРМР, ПМРР.

Можно рассуждать и иначе: назвать уроки русского языка Р1 и Р2, составить 24 расписания, как в задаче 92, а затем заявить, что уроков будет вдвое меньше, так как Р1 и Р2 друг от друга не отличаются.

Ответ: 12.

Задача 103. 50 г сахара растворили в 1 литре воды. От этой воды отлили один стакан вместимостью 200 г. Сколько сахара в этом стакане?

Так как сахар растворен, то можно считать, что в равных количествах воды содержатся равные количества сахара. Чтобы решить задачу, нужно вычислить, какую часть всей воды составляет один стакан. 1 л воды имеет массу 1 кг, а потому в первом действии следует разделить 1 кг на 200 г.

1 кг: 200 г = 1000 г: 200 г = 5, поэтому один стакан составляет одну пятую часть литра. Значит, и сахара в стакане одна пятая часть, то есть в стакане содержится 50 г: 5 = 10 г.

Ответ: 10 г.

Задача 104. Какая цифра в задаче на вычисление пропущена: (438 + 5681175 + 673 + 3487897): 10?

Смотри задачу 84.

Ответ: 0.

Задача 105. Какой вес можно отмерить гирями 1, 2,4 и 8 г, если класть гири только на одну чашу весов?

Решение видно из рисунка.

Ответ: Любой от 1 до 15 г.

Замечание для учителя: эти числа (1, 2, 4 и 8 г) — степени числа 2. Продолжая этот ряд гирь, мы получим возможность минимальным числом гирь отмеривать любые веса с использованием для гирь одной чаши весов.

Задача 106. Двое одновременно отправились из А в В. Первый поехал на велосипеде, второй — на автомобиле со скоростью, в 5 раз большей скорости первого. На полпути автомобиль сломался, и оставшуюся часть пути автомобилист прошел пешком со скоростью, в два раза меньшей скорости велосипедиста. Успел ли велосипедист помахать ручкой автомобилисту?

Вторую половину пути автомобилист шел столько же времени, сколько потребовалось велосипедисту на весь путь. Значит, автомобилист прибыл в Б позже велосипедиста как раз на то время, за которое он проехал первую половину пути. То есть вначале он намного обогнал велосипедиста, а к концу пути велосипедист обогнал его, пешего.

Ответ: Да.

Задача 107. Расшифруй ребус: хххх — ххх = 1.

Разность двух чисел равна единице, если это соседние числа. Значит, нужно найти два соседних числа, одно из которых трехзначное, а другое четырехзначное. Это числа 999 и 1000.

Поделиться:
Популярные книги

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3

Боярышня Дуняша 2

Меллер Юлия Викторовна
2. Боярышня
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Боярышня Дуняша 2

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Наследник

Майерс Александр
3. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Имперец. Земли Итреи

Игнатов Михаил Павлович
11. Путь
Фантастика:
героическая фантастика
боевая фантастика
5.25
рейтинг книги
Имперец. Земли Итреи

Законы Рода. Том 13

Андрей Мельник
13. Граф Берестьев
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 13

ИФТФ им. Галушкевича. Трилогия

Кьяза
Фантастика:
фэнтези
юмористическая фантастика
5.00
рейтинг книги
ИФТФ им. Галушкевича. Трилогия

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2