Чтение онлайн

на главную - закладки

Жанры

Новые источники энергии
Шрифт:

Перспективная российская разработка в области изотермических преобразователей энергии Юрия Евгеньевича Виноградова называется «найквистор». В качестве источника энергии рассматриваются «тепловые шумы Найквиста». По расчетам автора, такие источники энергии, при комнатной температуре, могут обеспечить около 100 ватт с квадратного сантиметра рабочей поверхности.

Данная тема мне знакома практически, поскольку и в обычной радиотехнике иногда используется генератор шума, состоящий из усилителя и «источника шума», в роли которого может применяться обычный полупроводниковый стабилитрон. Метод кажется простым в реализации, и многие исследователи о нем задумывались. Мощность можно получить, объединив сигналы от тысяч «шумных» резисторов или полупроводниковых переходов. Изготовление «матрицы», содержащей миллионы микроэлементов и соединительные проводники, при современном уровне развития электронной промышленности, не является препятствием.

Сложность реализации данной идеи в том, что шумовые импульсы не совпадают по фазе, поэтому их сложение не дает увеличения тока в нагрузке. Возникает аналогия с попыткой использования теплового хаотического

движения молекул воздуха (механические конвертеры).

Сигнал каждого «шумного» элемента необходимо «выпрямить», то есть получить электрический ток одного направления.

Решение, предложенное Виноградовым, заключается в использовании варикапов, полупроводниковых элементов, сочетающих в себе необходимые свойства «шумящего элемента», выпрямительного диода и накопительной емкости. Автор провел эксперименты, и получил подтверждение предложенного им принципа.

Интересен расчет себестоимости данного метода, проведенный Виноградовым Ю.Е. в статье «Об открытых возможностях построения изотермических преобразователей». Пластина поверхностью 1 квадратный метр, теоретически, может обеспечить мощность более 260 кВт (до 1 МВт).

Для сравнения, солнечные панели в средней полосе России производят около 200 ватт на один квадратный метр, в хорошую погоду. При этом, такая панель «найквисторов» может стоить не более 400 тысяч рублей. В этой конструкции, установочная стоимость 1 киловатта примерно равна 1,5 тысячи рублей.

Коротко отметим «Способ прямого преобразования тепловой энергии в электрическую», авторы Даниэлян М.И. и др. Суть метода состоит в том, что электрические конденсаторы с алюминиевыми электродами заряжают пилообразными импульсами, причем между импульсами выдерживают паузу, длительность которого равна 2–5 импульсам. Форма импульса может быть другая, но не прямоугольная. Во время паузы, происходит дополнительный «самозаряд» конденсатора. Разряд дает больше энергии, чем затрачено. Авторы полагают, что причиной такого «самозаряда» является проникновение носителей заряда в микрорельеф электродов. По-моему, эффект также обусловлен инерциальностью носителей заряда, которые продолжают движение уже после того, как закончился импульс заряда и началась «пауза».

Вопрос преобразования тепловой энергии окружающей среды можно сформулировать, не как концентрацию рассеянного тепла, а как вопрос эффективного охлаждения рабочего тела. Создав область пониженной температуры без затрат мощности первичного источника, можно обеспечить разность температур относительно температуры окружающей среды, что создаст условия для работы обычных термоэлектрических преобразователей. Одно из перспективных направлений в данной области – магнитное охлаждение.

Рассмотрим конструкцию магнитного холодильника, Astronautics Corp. www.astronautics.com и Ames Laboratory www.ameslab.gov, рис. 214.

Рис. 214. Магнитный холодильник. Схема работы

Холодильник представляет собой вращающуюся конструкцию, которая состоит из колеса, содержащего сегменты с порошком гадолиния, а также мощного постоянного магнита. Колесо прокручивается через рабочий зазор магнита. При вхождении сегмента с гадолинием в магнитное поле возникает магнитокалорический эффект, в результате которого сегмент нагревается. Это тепло отводится теплообменником, охлаждаемым водой. Когда гадолиний выходит из зоны магнитного поля, возникает магнитокалорический эффект противоположного знака, и материал кольца охлаждается. Компактное устройство работает фактически бесшумно и без вибраций, что выгодно отличает его от использующихся сегодня холодильников с парогазовым циклом. «Постоянный магнит и рабочее тело в виде гадолиния не требуют подвода энергии, утверждает профессор Карл Гшнайднер, сотрудник Ames Laboratory. Небольшая энергия необходима только для вращения колеса и обеспечения работы водяных насосов».

Такие системы могут быть автономными, поскольку создаваемая в них температурная разность легко может быть преобразована в электроэнергию, а мощность на выходе будет в несколько раз превышать мощность, потребляемую приводом ротора.

Магнитокалорический эффект (МКЭ), который лежит в основе работы магнитного холодильника, был открыт еще в 1881 году. Суть его состоит в способности веществ нагреваться и охлаждаться под действием магнитного поля. Изменение температуры является результатом перераспределения внутренней энергии вещества между системой магнитных моментов атомов и системой магнитных моментов кристаллической решетки. Намагничивание и размагничивание выступают аналогами циклов сжатия и расширения хладона в обычных холодильниках и тепловых насосах. Поскольку твердое тело обладает большей теплоемкостью, то изменение энтропии на единицу объема в твердых магнитных материалах в семь раз выше, чем в газе. Теоретически, магнитные холодильники должны быть во столько же раз и компактнее.

В России, приоритет в изучении данного эффекта принадлежит компании «Перспективные магнитные технологии и консультации» www.ndfeb.ru. Ее возглавляет доктор физико-математических наук, заведующий лабораторией физфака МГУ Александр Тишин. Схема их установки показана на рис. 215.

Рис. 215. Схема установки для изучения магнитокалорического эффекта

В частности, на физическом факультете МГУ проведена большая работа по анализу характеристик многочисленных комбинаций редкоземельных и магнитных металлов и других материалов. Установлено, что сплав родия с железом Fe49Rh51 обладает максимальным известным удельным МКЭ, в несколько раз превышающим МКЭ материалов, обычно используемых в исследованиях по магнитному охлаждению.

Итак, мы рассмотрели несколько способов преобразования

тепла окружающей среды в электроэнергию или механическую мощность. Отметим, что даже если специально не ставить такую задачу при конструировании, то эффект охлаждения рабочего тела может проявляться в других схемах преобразователей энергии, в результате энергообмена с окружающей эфирной средой, и отбора ее тепловой энергии, как, например, в схеме Флойда Свита.

Данные «побочные явления» убедительно показывают, что все аналогичные источники энергии работают в режиме открытых физических систем и энергообмена с эфирной средой.

Глава 15 Вода и водород в энергетике

О сколько нам открытий чудных

готовят просвещенья дух

и опыт, сын ошибок трудных.,

и гений, парадоксов друг,

и случай, Бог изобретатель…

А.С. Пушкин

Перейдем к рассмотрению технологий автономного энергоснабжения, в которых главную роль играет вода или водород. Мир создан разумно, и в нашем распоряжении на планете есть возобновляемое топливо в большом количестве. Это вода.

Итак, вода – это жидкое топливо, состоящее из связанных газов, кислорода и водорода, в безопасной и компактной упаковке. Мы уже рассматривали применение центробежной силы для эффективного получения водорода из воды. В этой главе мы рассмотрим другие примеры конструирования источников энергии, использующих воду или водород.

Отметим, что электролизный метод получения водорода в России был запатентован в 1888 году Профессором Лачиновым. В его экспериментах с электролизерами высокого давления, было показано, что, при определенных условиях, расход электроэнергии не зависит от создаваемого давления, поэтому получаемые газы могут совершать большую работу, чем затрачивается на разложение воды. Расход составлял всего 11 % от получаемой энергии сжатого газа. Избыточная энергия, при высвобождении газа, поглощается из окружающей среды. Лачинов отмечал факты замерзания и образования инея на стенках его электролизеров. Впрочем, это может быть и результатом охлаждения газа при его резком расширении.

Ранее, мы рассмотрели резонансные метода Кили, который получал газ из воды методом вибраций, и затем использовал газ высокого давления в своей машине для совершения полезной работы. Эти и другие методы имеют одинаковую особенность: авторы разными способами получают газ высокого давления при низких затратах энергии первичного источника.

Следующий вопрос: эффективность процесса разложения воды. Этот фактор обеспечивается при понимании строения молекул воды и их внутренних связей с окружающим эфиром.

Интересный подход к данному вопросу предложил И.Л. Герловин. Его теория рассматривает «активацию» различных сред. Явление «активации» определяется следующим образом: это нарушение энергетического равновесия между атомами вещества и связанными с ними «элементарными частицами вакуума», то есть эфира. Это приводит к метастабильному состоянию молекулы и ее самопроизвольному распаду. Обычно, такая активация воды происходит при наличии в воде катализатора, который не расходуется, но создает вокруг себя пространственную структуру в эфире, влияющую на стабильность молекул воды. При электролизе, способ бестоковой активации заключается в том, что один из электродов изолируется от воды, но электрическое поле создается. Электролиз при этом происходит, хотя тока проводимости через раствор нет. Теория описана в книге «Основы единой теории всех взаимодействий в веществе», И. Л. Герловин, 1990 год.

Известно, что в сильном электрическом поле происходит поляризация среды, а при выполнении определенных условий, произойдет и диссоциация молекул воды. По моему практическому опыту, могут быть изолированы оба электрода, при условии импульсного воздействия на воду и соответствующей высокой разности потенциалов. Вода поляризуется в области градиента потенциала, а ток проводимости и затраты мощности от источника – это косвенный фактор, которого можно избежать, если не допускать электрического пробоя между электродами. Форма электродов – отдельная тема исследований, но так же, как и во времена Лачинова, отличные результаты дает пара электродов в виде «иглы» или стержня и плоского листа. Остроконечный электрод создает сильный градиент поля в области острия.

Важное дополнение к общей картине мироздания, которое сделал Герловин, заключается в его формуле для описания плотности частиц эфира, находящихся в активном «возмущенном состоянии», в котором они могут взаимодействовать с частицами «грубой материи». Назовем эту величину плотности частиц эфира M. Общее число частиц эфира в объеме пространства назовем N. Герловин предложил формулу M = (aN)/3,14 где а – известная постоянная тонкой структуры, которая примерно равна 1/137. Число «пи» примерно равно 3.14. Эта формула означает, что в нашем мире «активизирована» небольшая часть общего количества эфирных частиц, примерно, 1/430 часть. Возникает интересная аналогия с формулой Н.А.Козырева, которая выражает «скорость хода времени» в нашем пространстве: скорость v = c/137. Выводы из данного наблюдения следующие: при большей «активизации» частиц эфира, возрастет «скорость хода времени», то есть должны наблюдаться некоторые темпоральные и гравитационные эффекты.

Из истории развития значительных российских изобретений в области высокоэффективного электролиза, рассмотрим работы Ивана Степановича Филимоненко. Он занимался высокоэффективным электролизом тяжелой воды в установках «теплого ядерного синтеза», идущего при температурах «всего» 1150 градусов Цельсия. Постановлением Совета Министров СССР и ЦК КПСС № 715/296 от 23.07.1960 года, он был назначен руководителем проекта, в рамках которого предусматривалась разработка новых принципов получения энергии, получения тяги без отброса массы, и защиты от ядерных излучений. Этим новым разработкам содействовали С. П. Королев, Г. К. Жуков, И. В. Курчатов. Применение установки Филимоненко нашли на некоторых советских спутниках, как высокоэффективные источники кислорода и водорода.

Поделиться:
Популярные книги

Карабас и Ко.Т

Айрес Алиса
Фабрика Переработки Миров
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Карабас и Ко.Т

Власть меча

Смит Уилбур
5. Кортни
Приключения:
исторические приключения
5.00
рейтинг книги
Власть меча

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Закон ученого

Силлов Дмитрий Олегович
Снайпер
Фантастика:
героическая фантастика
боевая фантастика
5.00
рейтинг книги
Закон ученого

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

В осаде

Кетлинская Вера Казимировна
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
В осаде

Блуждающие огни 3

Панченко Андрей Алексеевич
3. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни 3

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

"Никто" так не смотрит

Кистяева Марина
Территория любви
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Никто так не смотрит