Новые источники энергии
Шрифт:
Существуют гальванические элементы, работающие на эндотермических реакциях. Энергия для протекания этих реакций отбирается от кристаллической решетки конструкции, в силу чего корпус элемента охлаждается (покрывается изморозью) и к нему непрерывно стекает (концентрируется) тепловая энергия окружающей среды. Следовательно, электрическая энергия в таком химическим источнике энергии, частично, обусловлена поглощением энергии окружающей среды.
Механоинверсия. Существуют различные способы использования кинетической энергии молекул воздуха. Эти устройства могут быть пассивные или активные, то есть струйные и потоковые технологии.
Гравинверсия. Поскольку гравитационное поле делает среду неоднородной, то это должно вносить «искажения» в термодинамический процесс выравнивания состояний, характеризуемый показателем возрастания энтропии.
Это обстоятельство отмечали еще Максвелл и Циолковский, которые высказали идею о том, что в атмосфере, под воздействием гравитационного поля, должен возникать вертикальный градиент температур. Циолковский предсказал, что указанный градиент должен зависеть от молекулярного состава газа.
Современная теория таких генераторов энергии подробно разработана Профессором В. Ф. Яковлевым, который рассчитал зависимость градиента температур от молекулярного состава газа. На основе этого эффекта им, совместно с Е. Г. Опариным, предложена идея принципиально нового генератора энергии, состоящего из двух труб, наполненных разными газами. рис. 205.
Рис. 205. Гравитационная инверсия тепловой энергии в схеме Яковлева – Опарина
Из схемы очевидно, что температура газов в двух трубках, в верхней части будет существенно отличаться друг от друга, и это можно использовать для получения энергии, к примеру, с помощью термоэлементов.
Термоинверсия. Рассмотрим поршневой двигатель, работающий на впрыскивании в камеру с цилиндром негорючего сжиженного газа (азот, гелий). Давление образующегося газа будет двигать поршень, при этом цилиндр будет охлаждаться, так как газ расширяется, а к нему устремится поток тепловой энергии из окружающей среды. Работа такого двигателя, в сумме, будет складываться не только из работы расширяющихся газов, но также и будет некоторая прибавка за счет использования тепловой энергии окружающей среды.
Электроинверсия. В данной области исследований, большие надежды П.К.Ощепкова были связаны с полупроводниковыми преобразователями тепла в электроэнергию. Существуют и другие методы. Николай Емельянович Заев запатентовал способ концентрации энергии окружающей среды путем использования свойств нелинейного конденсатора и нелинейного ферромагнетика. Мы рассмотрим их позже подробнее.
Покажем некоторые технологии и идеи по данной теме. Важное изобретение в области механической инверсии тепловой энергии,
«Как известно из молекулярно-кинетической теории газов, молекулы воздуха хаотически (вне зависимости от скорости потока воздуха) движутся со скоростью 500 метров в секунду, при обычных условиях атмосферного давления и комнатной температуры. Масса одного кубического метра воздуха составляет более 1 кг. Нетрудно подсчитать, что в атмосфере содержится огромное количество энергии, ее можно было бы направить «на работу в турбину», но движение молекул воздуха хаотично, и принято считать, что энергия в такой среде может только поглощаться и рассеиваться, и процесс этот, якобы, необратимый. Действительно, в привычных мерках пространства и времени, молекулы движутся совершенно беспорядочно, количество их огромно, и процесс, сопровождающийся увеличением энтропии, в этом случае наиболее вероятен. Между тем, движение молекулы на участке «свободного пробега», в промежутке времени между столкновениями предстает как упорядоченное, линейное и предсказуемое. Среднее расстояние, которое преодолевает молекула за это время, составляет десятки нанометров.»
Отметим, что появившиеся в последние годы нанотехнологии позволяют конструировать требуемые элементы преобразователя энергии, имеющие микрорельеф, используя, например, нанотрубки. Микрорельеф порядка 100 нм – это несложная техническая задача и для изготовителя микросхем.
Далее, Михаил Порфирьевич рассматривает два случая, первый: пластину, обе стороны которой представляют собой абсолютно ровные поверхности и имеют площади S1 и S2 (рис. 206 слева наверху). В таком случае, на обе стороны пластины действуют силы, нормально направленные к пластине и численно равные суммарным импульсам. Эти импульсы передаются каждой из сторон ударяющимися молекулами воздуха. Так как суммарные импульсы пропорциональны площадям сторон, a они равны, то и силы равны. При такой ситуации нет разницы сил давления на пластину с двух сторон.
Другой вариант: предположим, что одна сторона пластины покрыта каким-либо рельефом, например, выполнена рельефной, рис. 206, внизу. При достаточно малых размерах рельефа поверхности, когда расстояние d меньше чем средняя длина свободного пробега молекулы, появляется фактор, нарушающий установленный выше баланс сил. Нормальное атмосферное давление равно примерно 1 кг на 1 квадратный сантиметр, и разница давлений в один процент уже довольно значительна. Предварительные, весьма приблизительные расчеты показывают, что разница давлений может составлять десятки процентов, то есть силу на уровне 100–400 грамм на 1 квадратный сантиметр. Разместив такие пластины на роторе, мы можем получить постоянное вращение ротора электрогенератора под нагрузкой.
Должен отметить, что в моем понимании, суть данной концепции не в том, чтобы создать разную площадь S1 и S2. Тема относится к конструированию такого нанорельефа поверхностей, который позволит создавать разное давление окружающей среды на пластину материала, одна сторона которой имеет микрорельеф. Этого результата можно добиться разными способами. Например, если хаотическое движение молекул окружающей среды, благодаря нанорельефу, становится упорядоченным, то изменяется относительная скорость молекул среды и пластины, с той ее стороны, где сделан микрорельеф. В таком случае, обеспечивается подъемная сила, но в отличие от известного эффекта Жуковского – Чаплыгина, сила действует на неподвижное «нанокрыло», находящееся в неподвижной среде, молекулы которой движутся.
Итак, задача решается либо путем частичного отбора кинетической энергии частиц окружающей среды, либо путем частичного упорядочивания их хаотического теплового движения. При охлаждении среды, возможен эффект появления тумана, конденсации атмосферных паров воды. В связи с этим, имеется интересная смысловая аналогия: мы говорим «парит», «парящий в высоте» о чем-то летающем в воздухе на одном месте. Возможно, это древнее слово отражает смысл забытых нами технологий.
Частичный отбор энергии у частиц, должен сопровождаться нагреванием наноэлементов, например, нановолосы будут нагреваться за счет их деформаций. Упорядочивание, то есть, ламинаризацию, мы уже ранее рассматривали в главе про молекулярный двигатель. Данный метод может быть разделен на два способа: создание за счет рельефа преимущественного вектора движения частиц вдоль поверхности пластины или перпендикулярно пластине. Соответственно, давление среды на пластину со стороны рельефа либо уменьшается, либо увеличивается.
Предлагаемый материал назван САМ – силовой активный материал, или САНМ – силовой активный наноматериал, поскольку его функции состоят в создании активной силы, действующей на пластину за счет разного давления окружающей среды на разные стороны пластины. Сила называется «активной» поскольку она не требует реактивного отброса массы. Мы решаем задачу создания движущей силы противоположным методом. В реактивных движителях рабочая масса получает импульс, и отбрасывается от движителя, сообщая ему соответствующий импульс. В активном движителе все наоборот: движитель получает импульс, равный импульсу, отбираемому от молекул окружающей среды. Закон сохранения импульса, при взаимодействии движителя и рабочей массы, разумеется, строго выполняется. Окружающая среда, при этом, охлаждается.
Эффект «нанокрыла» создает не только активную силу, но и соответствующие изменения в окружающей среде, в частности, ее охлаждение. Это обусловлено тем, что создаваемый макроимпульс пластины должен быть эквивалентен потере величины микроимпульсов частиц среды. В связи с этим, САМ – технология открывает качественно новые перспективы в автономной энергетике. Применение нанотрубок для развития данной концепции представляется наиболее перспективным, хотя и другие способы получения микрорельефа, включая бионанотехнологии, могут найти практическое применение.
Данный проект находится в стадии формирования новой компании, приглашаются инвесторы и специалисты в области нанотехнологий. Обращайтесь к автору книги.
В работе Михаила Порфирьевича, есть важное замечание о необходимости упругого столкновения с поверхностью пластины. Это обязательное условия передачи импульса. При рассмотрении его конструкции, мной было предложена аналогичная версия, но более простая, без микрорельефа. Предлагаемый метод показан на рис. 207. Пластина, одна сторона которой выполнена из материала, обладающего упругими свойствами при взаимодействии с молекулами воздуха, а другая сторона пластины покрыта материалом, который поглощает импульс удара молекул воздуха, деформируется, и частично, преобразует импульс в тепловую энергию. Благодаря разнице в модуле суммарного импульса слева и справа, пластина получит импульс движущей силы в сторону ее неупругой поверхности. В данной конструкции, неупругая поверхность пластины всегда будет теплее упругой поверхности. Тепло необходимо отводить во внешнюю среду, при большой мощности конструкции.
Механические приводы, сконструированные по данной технологии, могут использоваться не только в энергетике для создания крутящего момента, но также на транспорте, для создания подъемной и движущей силы любой величины, без затрат топлива.
Расчет силы, при 10 % асимметрии атмосферного давления на силовой активный материал (САМ) с разных сторон, дает величины силы около 1 тонны на 1 квадратный метр.
Пакет таких 100 пластин, каждая толщиной 5 мм, с зазором 5 мм, займет объем в один кубометр, и сможет поднять в воздух 100 тонн.
В связи с этим, можно вспомнить идеи Максвелла о возможности создания некоего механизма, разделяющего молекулы газа на медленные «холодные» и быстрые «горячие». Такой механизм и есть специальный рельеф, позволяющий без затрат получать градиент температуры.
Отметим, что данный принцип был мной показан, в том числе экспериментально, на конференции «Новые идеи в естествознании», 1996 год, Санкт-Петербург, доклад «Концепция гравитации», и позднее, в 1998 году, на конференции «Пространство, время и гравитация», Петергоф, Университет, Сборник Докладов, часть 1, 1999 год. В сокращенном виде, статья по данной теме была опубликована в американском журнале ELECTRIC SPACECRAFT, № 27, 1997 год.
Простейший эксперимент в пользу предлагаемой концепции, известен еще с 1935 года, и впервые был описан в журнале Popular Science, № 126, 1935 год, объяснение которого было сделано в моем докладе в 1996 году. На рис. 208 показаны результаты взаимодействия двух грузов, которые «разбегаются» от центральной точки, теоретически, имея одинаковый импульс.
В моем эксперименте, в начальной позиции пружина сжата, а грузики удерживаются вместе ниткой. После разрушения нитки (пережигания), они движутся в разные стороны, примерно с одинаковым импульсом. Особенности взаимодействия грузиков с опорой состоят в том, что справа, на рис. 208, грузик взаимодействует упруго, а слева, жестко, с деформацией. Таким образом, в правой части создаются лучшие условия для передачи импульса грузика опоре, чем в левой части устройства, где энергия импульса частично преобразуется в тепло. В результате ненулевого суммарного импульса, все устройство смещается в сторону упругого взаимодействия. Эксперимент легко повторим, с одинаковым результатом. Проводить его лучше на плавающей платформе, или полированном столе.
Напомню, что важность упругого взаимодействия для обеспечения передачи импульса рабочего тела корпусу ротора, мы уже отмечали неоднократно, в том числе, при рассмотрении схемы на рис. 2. Подробнее, технология САМ рассмотрена в моей книге «Новые космические технологии» 2012 год. В ней даны расчеты для конструирования авиационного транспорта грузоподъемностью 1 миллион тонн, причем, не требующего топлива.
Мы отвлеклись на рассмотрение данного эксперимента для того, чтобы лучше понять условия работы устройства, предложенного ранее и показанного на рис. 207. Коммерциализация данного изобретения сводится к поиску оптимальных материалов упругого и неупругого покрытия пластин. Это не так просто, учитывая массу и кинетическую энергию молекулы воздуха, то есть величину импульса. Однако, несомненным преимуществом данного метода является низкая себестоимость и широкое применение, в том числе, для аэрокосмического транспорта. Детали можно обсудить при рассмотрении технического проекта по данной теме, при моем участии в роли разработчика. Предлагается лицензия.
Один из методов механической конверсии тепловой энергии среды, предложил Б.М. Кондрашов ([email protected]), в статье «Струйные энергетические технологии», журнал «Новая Энергетика». Автор пишет о «параллельном присоединения» дополнительных масс воздуха к стационарной реактивной струе газотурбинного двигателя, что происходит без дополнительных затрат энергии топлива за счёт «неуравновешенной силы внешнего давления на входной раструб (заборник) эжектора». Эти разработки относятся к технологиям «управляемого использования энергии атмосферы для выполнения работы», как пишут авторы данного изобретения.
Методы вовлечения атмосферного воздуха известны: пульсации активной струи создают периодическое разряжение среды (низкое давление) на входном патрубке эжекторной насадки. К данной области также относится открытие О.И. Кудрина: «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струей». В своей статье, Кондрашов пишет: «Таким образом, за счет энергии атмосферы, преобразованной в процессе последовательного присоединения предыдущих периодов, осуществляется привод воздушного теплового насоса, при работе которого создаются условия для преобразования, в следующих периодах, низкопотенциальной энергии внешней газовой массы, находящейся в равновесном состоянии, в доступную для использования кинетическую энергию, высокопотенциальную теплоту и «холод» расчетной температуры.
В этом способе, отработавшая газовая масса холодная, и не содержит продуктов сгорания. Источники энергии – низкопотенциальная теплота атмосферного воздуха и гравитация, создающая статическое атмосферное давление (также как в природном стохастическом процессе). Условия для преобразования энергии атмосферы создаются при расширении сжатого воздуха, сжимаемого за счет части мощности, полученной в предыдущих периодах. Поэтому устройства, осуществляющие этот способ с использованием открытых термодинамических циклов, называются «атмосферные бестопливные струйные двигатели». Работы Б.М.Кондрашова подробно можно изучить по его патентам, № 2188960 RU F 02 C 3/32, 5/12 «Способ преобразования энергии в струйной установке (варианты), струйно-адаптивном двигателе и газогенераторе», и международная заявка на патент PCT/RU2002/000338 F 2 C 3/32 «Способ преобразования энергии в струйных двигателях» PCT WO2004/008180A1.
Теоретические основы данных процессов, также развивают авторы работ по «ламинаризации» турбулентных потоков воздуха, газов и другой среды. Другими словами, кинетическая энергия среды в турбулентном потоке, не может быть нами использованаПоясним термины. Ламинарное течение среды (латинское слова «lamina» означает «пластинка» или «полоска») – это течение, при котором среда перемещается слоями без перемешивания и пульсаций, то есть без беспорядочных быстрых изменений скорости и давления, как показано на рис. 209.
Рис. 209. Ламинарный и турбулентный потоки среды (газ или жидкость)
Очевидно, что обычный поток воздуха не является ламинарной средой, так как при общей «макро – скорости», обычно, в несколько метров в секунду, в нем происходят броуновские тепловые движения молекул на «микро – скоростях» порядка 500 метров в секунду. Аналогичная ситуация наблюдается в потоках жидкости.
Простейший способ «ламинаризировать», то есть выровнять вектора движения молекул воздуха, и получить сонаправленный импульс молекул, который затем можно использовать, направив поток на турбину, это вращение со скоростями порядка 500 метров в секунду, причем надо этот поток «прижать» центробежной силой к стенке корпуса. Предположим, мы конструируем преобразователь энергии с радиусом корпуса 160 сантиметров. Длина окружности, по которой будет вращаться поток воздуха, примерно равна одному метру. Скорость 500 метров в секунду – это 30 тысяч оборотов в минуту, то есть вполне реальная техническая задача для современных электроприводов. Отсюда, все центробежные вентиляторы и насосы, частично, ламинаризируют поток среды, в результате чего, повышается их эффективность. Это мы уже рассматривали в главе о центробежных машинах, показанных на рис. 45 и рис. 47.
Перейдем к электронным преобразованиям тепловой энергии. Российские разработки в данной области запатентованы Николаем Емельяновичем Заевым, который показал возможность практического использования нелинейности ферритов и некоторых диэлектриков. Ферриты работают с поглощением тепловой энергии среды в циклах «намагничивание – размагничивание». Специальные диэлектрики, используемые в нелинейных конденсаторах «варикондах», обеспечивают избыточную энергию в циклах «заряд – разряд».
В статье «Близкая даль энергетики», Журнал Русского Физического Общества, № 1, 1991 год, Заев пишет: «Другой способ использования («концентрирования», по словам Фридриха Энгельса) рассеянной энергии может быть основан на свойстве нелинейных конденсаторов изменять свою емкость в зависимости от величины электрического поля. Хотя добавка эта обычно чрезвычайно мала, все же имеются диэлектрики, которые в таком конденсаторе обеспечивают добавку до 20 %. Следовательно, уже сейчас их КПД 120 %, и это не предел. Здесь тоже оказывается, что разрядка – не зеркальное отображение зарядки. Если теперь собрать колебательный контур с таким конденсатором и мощностью в 1000 Вт, этот контур мало того, что будет самоподдерживающимся, он будет в состоянии отдавать на сторону, на полезную нагрузку 200 Вт мощности. Нечего и говорить о том, что конденсатор этот будет охлаждаться, и к нему будет притекать тепло окружающей среды (эксэргия её станет отрицательной)».
Применение данного метода, требует развития технологии нелинейных диэлектриков, на основе сегнетоэлектриков, которые были разработаны в НИИ «Гириконд», Санкт-Петербург, под руководством Татьяны Николаевны Вербицкой. Мы обсуждали с ней перспективы развития данной технологии, хотя спрос на вариконды был у производителей специальной аппаратуры, не связанной с альтернативной энергетикой. Справочник по варикондам издан в 1958 году. Вариконды ранее производились серийно на Витебском радиозаводе.
Метод имеет свои тонкости, которые проще понять по методу механической аналогии. Представим себе процесс заряда обычного конденсатора, без диэлектрика, с двумя пластинами и зазором между ними. При заряде такого конденсатора, его пластины притягиваются друг к другу, и тем сильнее, чем больше заряд на них. При наличии у пластин конденсатора возможности двигаться, расстояние между ними уменьшится. Это соответствует увеличению емкости конденсатора, так как емкость зависит от расстояния между пластинами. Таким образам, «истратив» одно и то же количество электронов, можно получить больше запасенной энергии, если емкость увеличилась. Представьте себе, что в ведро емкостью 10 литров наливают воду. Предположим, что ведро резиновое, и в процессе его наполнения, его объем увеличивается, например, на 20 %. В итоге, сливая воду, мы получим 12 литров воды, хотя ведро при этом уменьшится, и в пустом виде будет иметь объем 10 литров. Дополнительные 2 литра, каким-то образом, в процессе «наливания воды» были «привлечены из среды», так сказать, «присоединились» к потоку.
Для электрического конденсатора, это означает, что если по мере его заряда, емкость увеличивается, то энергия поглощается из среды и преобразуется в избыточную запасаемую потенциальную электрическую энергию. Ситуация для простого плоского конденсатора с воздушным диэлектриком естественная (пластины сами собой притягиваются), а это означает, что мы можем конструировать простые механические аналоги варикондов, в которых избыточная энергия запасается в форме потенциальной энергии упругого сжатия пружины, помещенной между пластинами конденсатора. Этот цикл не может быть такой же быстродействующий, как в электронных устройствах с варикондами, но заряд, на пластинах конденсатора большого размера, может быть накоплен значительный, и устройство может генерировать большую мощность, даже при низкочастотных колебаниях. При разряде, пластины вновь расходятся на исходное расстояние, уменьшая начальную емкость конденсатора (пружина освобождается). При этом должен наблюдаться эффект охлаждения среды.
Форма зависимости диэлектрической проницаемости сегнетоэлектрика от напряженности приложенного поля показана на графике рис. 210.
На начальном участке кривой, диэлектрическая проницаемость, а значит и емкость конденсатора, увеличивается при росте напряжения, а затем она падает. Заряжать емкость надо только до максимальной величины (вершина на графике), иначе теряется эффект. Рабочий участок кривой помечен на графике рис. 210 серым цветом, изменения напряжения в цикле «заряд – разряд» должны происходить в пределах этого участка кривой. Простой «заряд-разряд» без учета максимальной рабочей точки кривой зависимости проницаемости от напряженности поля не даст ожидаемого эффекта. Эксперименты с такими «нелинейными» конденсаторами, представляется весьма перспективными для исследования, тем более, что в некоторых материалах, зависимость диэлектрической проницаемости сегнетоэлектрика от приложенного напряжения позволяет получать не 20 %, а 50-ти кратные изменения емкости.
Применение ферритовых материалов, по аналогичной концепции, также требует наличия соответствующих свойств, а именно, характерной петли гистерезиса при намагничивании и размагничивании, рис. 211.
Этими свойствами обладают почти все ферромагнетики, поэтому преобразователи тепловой энергии среды, использующие данную технологию, могут быть подробно экспериментально изучены. Пояснение: «гистерезис», (от греческого hysteresis – запаздывание) – это различная реакция физического тела на внешнее воздействие, в зависимости от того, подвергалось ли это тело ранее тем же воздействиям, или подвергается им впервые.
На графике, рис. 211, показано, что намагничивание начинается с нулевой отметки, достигает максимума, а затем, начинается спад (верхняя кривая). При нулевом внешнем воздействии, отмечается «остаточное намагничивание», поэтому, когда цикл повторяется, то расход энергии меньше (нижняя кривая). При отсутствии гистерезиса, нижняя и верхняя кривые идут вместе. Избыточная энергия такого процесса тем больше, чем больше площадь петли гистерезиса. Н.Е.Заевым было экспериментально показано, что удельная плотность энергии для таких преобразователей составляет примерно 3 кВт на 1 кг ферритового материала, при максимально допустимых частотах циклов намагничивания и размагничивания.
Приоритеты: заявки Н.Е.Заева на открытие «Охлаждение некоторых конденсированных диэлектриков меняющимся электрическим полем с генерацией энергии» № 32-ОТ-10159; 14 ноября 1979 года, заявка на изобретение «Способ преобразования тепловой энергии диэлектриков в электрическую», № 3601725/07(084905), 4 июня 1983 года, и «Способ преобразования тепловой энергии ферритов в электрическую», № 3601726/25(084904). Метод был запатентован, патент RU2227947, 11 сентября 2002 года.
Существует американский патент на аналогичный, маломощный, но вполне реальный способ получения свободной энергии за счет тепловых шумов.
В 1973 году Джон Вайганд (John Wiegand) запатентовал в США систему на эффекте Баркгаузена, патент № 3,757,754, схема показана на рис. 212.
Тепловые шумы в магнитострикционном материале позволяют практически получать небольшую мощность, без всякого внешнего источника, кроме тепла среды. Компания Wiegand Electronics выпускает источники энергии, обеспечивающие 12 Вольт и небольшой ток, что может применяться для снабжения потребителей мощностью в несколько милливатт. В показанной на рис. 212 конструкции, магнитный сердечник 14 изготовлен из магнитомягкого материала, а его цилиндрическая оболочка 12 сделана из высококоэрцитивного магнитного материала. Магнит 16 и катушка 18 обеспечивают получение мощности в нагрузке.
Работает генератор Вайганда следующим образом: тепловые шумы в сердечнике 14 скачкообразно меняют его магнитные свойства, в том числе и его магнитную проницаемость. В результате этих изменений, для магнитного потока, создаваемого постоянным магнитом 12, изменяются условия распространения в пространстве, и часть его поля, проходящая через внешнее пространство, также меняет свою величину. Это изменение создает влияние на поле магнита 16, отклоняя его в сторону от катушки.
Все так сложно, а в устройстве создается мощность всего несколько милливатт! Тем не менее, устройства находит свое применение, например, был разработан электронный замок для двери с таким вечным источником электропитания, постоянно подзаряжающим аккумулятор.
Отметим российские работы по созданию полупроводниковых преобразователей тепла. Известен проект группы авторов из Санкт-Петербурга, под руководством Каминского В.В. «Термоэлектрический генератор (варианты) и способ изготовления термоэлектрического генератора», заявка на изобретение № 2005120519/28 от 22.06.2005, авторы В.В. Каминский, А.В. Голубков, М.М. Казанин, И.В. Павлов, С.М. Соловьёв, Н.В. Шаренкова. Рабочее тело преобразователя сделано из сульфида самария SmS, мощность экспериментальной установки очень мала, милливатты.
Другое направление исследований: в США известны проекты в MIT (Massachusetts Institute of Technology), которые можно назвать «современной термионикой». Более ста лет назад, исследователи «термионики» занимались получением тока между горячим катодом и холодным анодом в электронно-вакуумной лампе.
Современные ученые создают микроструктуры в полупроводниковых материалах, для этих же целей, но для работы при относительно невысоких температурах. Эти многослойные полупроводниковые структуры называют «термальные диоды». Пока им удается получать рабочие температуры от 200 до 400 градусов Цельсия, но это уже лучше, чем 1000 градусов, требуемые для получения эффекта в электронно-вакуумных лампах прошлого века.
Подобный преобразователь, называемый «термочип» (Thermo Chip) развивала компания ENECO, США. В настоящее время, компания куплена фирмой MicroPower Global, работающей совместно с Университетом Техаса, США. Рабочее тело преобразователя – теллурид свинца. Эффективность не хуже кристаллических солнечных панелей и достигает 20 %, причем солнечного света не требуется.
Калифорнийский институт в США также ведет исследования по прямой конверсии тепла в электроэнергию, их преобразователи уже достигают 40 % эффективности. Устройство называется AMTEC «The alkalimetal thermal to electric converter».
Американская компания Fellows Research Group, Inc., разработала и запатентовала технологию преобразования тепловой энергии среды, которая использует акустические волны в газе высокого давления. Источник звуковых волн требует небольшую мощность, но создаваемая волнами энергия на выходе устройства намного превышает затраты источника. Система работает с теплообменником, поглощающим рассеянную тепловую энергию среды. Описание приведено в патенте США № 6385972.
Устройство очень «шумное», но работает. Отметим, что звуковые волны относятся к известному нам виду продольных волн в среде, соответственно, отбор энергии у эфирной среды происходит через молекулы газа, с которыми связан эфир. Вещество всего лишь посредник для работы с эфирной средой.
Профессор Симко (Symko) из Университета штата Юта, США, возглавляет проект «термоаккустического пьезоэлектрического конвертера энергии» (Thermal Acoustic Piezo Energy Conversion (TAPEC). Известный пьезоэффект может не только производить звуковые волны, но, в некоторых условиях, при этом поглощается тепло окружающей среды. По-моему, эти эффекты могут быть одним из вариантов эффектов Заева, описанных ранее, и связанных с нелинейными диэлектриками.
Отметим отдельное направление – концентрация рассеянной тепловой энергии зеркалами. Расчеты и эксперименты показывают, что даже при отсутствии солнечного света, в полной темноте, но при комнатной температуре, мощность рассеянного теплового излучения составляет примерно 400 ватт на один квадратный метр. С помощью зеркал, рефлекторов и других концентраторов, можно сфокусировать эту рассеянную энергию на теплообменнике и нагреть рабочее тело до любой температуры. Таким образом, можно обеспечить работу обычной паровой машины, двигателя Стирлинга или другого привода, который будет вырабатывать электроэнергию, днем и ночью.
Кстати, о двигателе с внешним подводом тепла: модернизировав обычный двигатель Стирлинга, Кеннет Раен (Kenneth M. Rauen) создал преобразователь тепла окружающей среды в механическую энергию, способный вращать привод электрогенератора без затрат топлива. Схема показана на рис. 213. Коротко отметим, что машина Раена работает циклично: сжатие газа приводит к его нагреву, тем самым создается «внутренний источник тепла» для следующей части цикла. Затем, «внутренний источник тепла» охлаждается, так как начинается движение поршня в другом направлении. Построена экспериментальная модель. Подробности можно найти в патенте США № 6,698,200 от 2 марта 2004 года.
Демон
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
рейтинг книги
Институт экстремальных проблем
Проза:
роман
рейтинг книги
