Чтение онлайн

на главную - закладки

Жанры

Объясняя мир. Истоки современной науки
Шрифт:

Иоганн Кеплер был первым, кто понял суть несоответствия наблюдаемого движения планет теоретическому движению по кругу с постоянной скоростью, что озадачивало астрономов со времен Платона. Еще пятилетним ребенком, в 1577 г., он был потрясен, увидев комету, ту самую, которую Тихо изучал в своей обсерватории на Вене. Кеплер поступил в университет в Тюбингене, который под руководством Меланхтона специализировался в теологии и математике. В Тюбингене Кеплер изучал оба эти предмета, но больше заинтересовался математикой. Он узнал о теории Коперника от профессора математики из Тюбингена Михаэля Местлина и поверил в ее правильность.

В 1594 г. Кеплер стал учителем математики в лютеранской школе в Граце, в южной Австрии. Именно здесь вышла в свет его первая книга «Тайна мироздания» (Mysterium Cosmographicum). Как мы уже видели, одним из достижений теории Коперника было то, что она позволила с помощью астрономических наблюдений определить уникальный порядок расположения планет и размеры их орбит. Как было принято в те времена, в своей первой работе Кеплер считал эти орбиты окружностями, описываемыми при движении

планет, прикрепленных к прозрачным сферам, которые вращались, в соответствии с теорией Коперника, вокруг Солнца. Эти сферы не были строго двумерными, но представляли собой тонкие оболочки, внутренние и внешние радиусы которых он принимал равными минимальному и максимальному расстоянию от планеты до Солнца. Кеплер предположил, что радиусы этих сфер ограничиваются априорным условием – каждая сфера (кроме внешней сферы Сатурна) вплотную вписывается в один из пяти правильных многогранников, и каждая же сфера (кроме самой внутренней, принадлежащей Меркурию) вплотную описывается вокруг другого из того же ряда многогранников. В частности, если идти от Солнца, Кеплер вначале разместил сферу Меркурия, затем – октаэдр, сферу Венеры, икосаэдр, сферу Земли, додекаэдр, сферу Марса, тетраэдр, сферу Юпитера, куб и, наконец, сферу Сатурна. Все это было плотно подогнано друг к другу.

Эта схема задает относительные размеры орбит планет, не оставляя никакой свободы для подгонки результатов, кроме как свободы выбрать порядок пяти правильных многогранников, которые занимают пространство между планетами. Существует 30 различных способов разместить правильные многогранники в определенном порядке {187} , но ничего удивительного, что Кеплер выбрал тот способ, при котором предсказанные размеры орбит планет приблизительно соответствовали результатам, полученным Коперником.

187

Существует 120 перестановок пяти разных предметов; любой из пяти может быть первым, любой из оставшихся четырех – вторым, любой из оставшихся – третьим и любой из последних двух – четвертым, оставляя одну возможность для пятого. Таким образом, количество способов разместить пять предметов в определенном порядке вычисляется так: 5 x 4 x 3 x 2 x 1 = 120. Но в задаче о соотношениях размеров сфер, вписанных в многогранники и описанных вокруг них, не все из пяти правильных многогранников отличаются. Это соотношение одинаково для куба и октаэдра, а также для икосаэдра и додекаэдра. Таким образом, два ряда правильных многогранников, которые могут отличаться только взаимными заменами куба и октаэдра или икосаэдра и додекаэдра, дают одну и ту же модель Солнечной системы. Следовательно, количество разных моделей составляет 120/(2 x 2) =30.

На самом деле исходная схема Кеплера плохо работала для Меркурия, что заставило его подгонять ее под ответ, и лишь приблизительно подходила для остальных планет {188} . Но, как и на многих других ученых эпохи Возрождения, на Кеплера оказали большое влияние труды Платона, и, как и Платона, его заинтриговала теорема о том, что существует только пять видов правильных многогранников, оставляя, таким образом, место только для шести планет, включая Землю. Он с гордостью заявлял: «Теперь у нас есть причина, которая может объяснить количество планет!»

188

Например, если куб вписан во внутренний радиус сферы Сатурна и описан вокруг внешнего радиуса сферы Юпитера, тогда соотношение минимального и максимального расстояния от Сатурна до Солнца, которое, согласно Копернику, равно 1,586, должно равняться расстоянию от центра куба до любой из его вершин, деленному на расстояние от центра того же куба до любой из его граней, или 3=1.732, что на 9 % больше.

Сегодня никто не стал бы принимать схему, похожую на ту, которую предлагал Кеплер, всерьез, даже если бы она работала лучше. Это не потому, что нас не захватывают эмоции Платона, который был потрясен краткостью списков возможных в математике объектов, наподобие последовательности правильных многогранников. Есть и другие короткие списки, которые по-прежнему интригуют физиков. Например, известно, что существует всего четыре «вида» чисел, для которых возможны арифметические действия, в том числе деление: вещественные числа, комплексные числа (в том числе квадратный корень из –1) и более экзотические виды чисел – кватернионы и октонионы. Некоторые физики потратили много усилий, чтобы включить кватернионы и октонионы наряду с вещественными и комплексными числами в фундаментальные законы физики. Схему Кеплера делает такой чуждой для нас не то, что он пытается придать какой-то физический смысл правильным многогранникам, а то, что он пытается объяснить размеры орбит планет, которые являются исторически случайными величинами. Какими бы ни были фундаментальные законы природы, сейчас мы можем быть полностью уверены, что они не соотносятся с радиусами орбит планет.

Но это не было просто глупостью со стороны Кеплера. В его времена никто не знал (и Кеплер не верил), что звезды являются «солнцами» для других планетных систем, они представлялись просто огнями на сфере, расположенной где-то за сферой Сатурна. Солнечная система обычно считалась всей вселенной, существовавшей с начала времен. Поэтому было совершенно естественно полагать, что детальная структура Солнечной системы так же непреложна, как и все остальное в природе.

В современной теоретической физике мы вполне можем

находиться в таком же положении. Обычно предполагается, что то, что мы называем расширяющейся Вселенной, все это огромное облако галактик, которое, как мы наблюдаем, разлетается во всех направлениях, и является всей Вселенной. Мы думаем, что физические константы, которые мы измерили, такие как, например, массы различных элементарных частиц, рано или поздно будут выведены из каких-то фундаментальных законов природы, которые пока нам не известны. Но вполне возможно, что то, что мы называем расширяющейся Вселенной, – это только маленькая часть огромного мультиверса, содержащего множество таких же расширяющихся вселенных, как та, которую мы наблюдаем, и что в разных частях этого мультиверса физические константы могут иметь разные значения. В таком случае эти константы являются параметрами среды, которые невозможно вывести из фундаментальных принципов, как и расстояние от планет до Солнца. Лучшее, на что мы можем надеяться, – это оценка исходя из антропного принципа. Среди миллиардов планет в нашей галактике только очень небольшое их число имеет подходящую температуру и химический состав для возникновения жизни, но очевидно, что когда жизнь все-таки возникнет и достигнет в своем развитии «стадии астрономов», то они обнаружат, что находятся на планете, принадлежащей именно к такому меньшинству. Поэтому нет ничего удивительного в том, что планета, на которой мы живем, находится не в два раза дальше от Солнца или ближе к нему. Точно так же кажется, что только очень небольшое число вселенных, составляющих мультиверса, будут иметь физические константы, которые позволяют жизни эволюционировать, но, конечно же, любой ученый обнаружит себя во вселенной, принадлежащей к этому меньшинству. Это предлагалось в качестве объяснения порядка величины темной энергии, о которой упоминалось в главе 8, до того, как темная энергия была открыта {189} . Конечно, в данном случае это явное абстрактное теоретизирование, но оно служит напоминанием о том, что, пытаясь понять законы природы, мы можем столкнуться с таким же точно разочарованием, с каким столкнулся Кеплер, пытаясь определить размеры Солнечной системы.

189

S. Weinberg, «Anthropic Bound on the Cosmological Constant» // Physical Review Letters 59, 2607 (1987); H. Martel, P. Shapiro, и S. Weinberg, «Likely Values of the Cosmological Constant» // Astrophysical Journal 492, 29 (1998).

Некоторые известные физики отвергают идею мультиверса, потому что не могут принять мысль о том, что в природе существуют константы, которые, возможно, никогда не будут получены расчетным путем. Очень может быть, что вся идея мультиверса окажется неправильной, и поэтому, конечно, преждевременно отказываться от попыток рассчитать все физические константы, о которых мы знаем. Но контраргументом к идее мультиверса никак не может являться наше огорчение от того, что мы не можем выполнить эти расчеты. Какими бы в конце концов ни оказались законы природы, нет никаких причин полагать, что они созданы для того, чтобы сделать физиков счастливее.

В Граце Кеплер начал переписываться с Тихо Браге, который прочитал «Тайну мироздания». Тихо пригласил Кеплера приехать к нему в Ураниборг, но Кеплер решил, что это было бы слишком далекое путешествие. Позже, в феврале 1600 г., Кеплер принял предложение Браге и приехал к нему в Прагу, которая с 1583 г. стала столицей Священной Римской империи. Там Кеплер начал изучать собранную Тихо информацию, особенно касающуюся движения Марса, и нашел расхождение в 0,13° с расчетами, построенными на теории Птолемея {190} .

190

Движение Марса является идеальной проверкой для теории движения планет. В отличие от Меркурия или Венеры, Марс виден, когда он находится высоко на ночном небе, что облегчает наблюдения. В любой заданный отрезок времени он проходит намного больший путь по орбите, чем Юпитер или Сатурн. Также его орбита отклоняется от круговой формы больше, чем орбиты всех остальных крупных планет, за исключением Меркурия (который не виден вдали от Солнца, что усложняет его наблюдения), поэтому отклонения от кругового движения с постоянной скоростью для Марса заметны гораздо сильнее, чем для остальных планет.

Кеплер и Браге не слишком хорошо ладили, и Кеплер вернулся в Грац. Как раз в это время протестанты были изгнаны из Граца, и в августе 1600 г. Кеплер и его семья были вынуждены уехать. Вернувшись в Прагу, Кеплер начал сотрудничать с Тихо в работе над «Рудольфовыми таблицами», новыми астрономическими таблицами, которые должны были заменить «Прусские таблицы» Рейнгольда. После смерти Браге в 1601 г. карьерные проблемы Кеплера были на какое-то время решены, поскольку он стал преемником Тихо на посту придворного математика императора Рудольфа II.

Император очень интересовался астрологией, поэтому в обязанности Кеплера как придворного математика входило составление гороскопов. Эта была работа, в которой он преуспел, еще будучи студентом в Тюбингене, несмотря на свое скептическое отношение к астрологическим предсказаниям. К счастью, у Кеплера оставалось время и для того, чтобы заниматься настоящей наукой. В 1604 г. он наблюдал сверхновую в созвездии Змееносца. Подобного явления в нашей Галактике или около нее после не случалось до 1987 г. В том же году он опубликовал труд «Оптическая часть астрономии» (Astronomiae Pars Optica), посвященный теории оптики и ее приложению к астрономии, включая влияние эффекта рефракции в атмосфере во время наблюдения за движением планет.

Поделиться:
Популярные книги

Предатель. Ты променял меня на бывшую

Верди Алиса
7. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Предатель. Ты променял меня на бывшую

Черный Баламут. Трилогия

Олди Генри Лайон
Черный Баламут
Фантастика:
героическая фантастика
5.00
рейтинг книги
Черный Баламут. Трилогия

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Вамп

Парсиев Дмитрий
3. История одного эволюционера
Фантастика:
рпг
городское фэнтези
постапокалипсис
5.00
рейтинг книги
Вамп

Новый Рал 3

Северный Лис
3. Рал!
Фантастика:
попаданцы
5.88
рейтинг книги
Новый Рал 3

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Барин-Шабарин 2

Гуров Валерий Александрович
2. Барин-Шабарин
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Барин-Шабарин 2

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха