Объясняя мир. Истоки современной науки
Шрифт:
Нами получено точное равенство. Но теперь посмотрим, как оно себя ведет в том случае, когда e очень мал. Числитель второй дроби в уравнении (11) имеет вид (1 - e cos )^2 = 1 - 2e cos + e^2cos^2, так что слагаемые нулевого и первого порядка в числителе и знаменателе дроби одни и те же, и вся разница между числителем и знаменателем заключается в коэффициентах членов, пропорциональных e^2. И значит, уравнение (11) полностью соответствует искомому нами с самого начала равенству (1). Для большей определенности мы можем оставить в уравнении (11) члены порядка e^2:
где O (e^3)
22. Фокусное расстояние линзы
Рассмотрим поставленную вертикально линзу с выпуклой передней стороной и плоской задней – похожие линзы Галилей и Кеплер использовали для изготовления объективов своих телескопов. Из криволинейных поверхностей легче всего полировать сферические, и мы допустим, что форма передней поверхности линзы – сегмент сферы радиусом r. Также в наших рассуждениях будем считать, что линза тонкая, то есть ее максимальная толщина значительно меньше, чем r.
Пусть луч света горизонтально падает на линзу параллельно ее оси и встречается с поверхностью линзы в точке P. В этом случае отрезок от расположенного позади линзы центра кривизны C сферической поверхности до точки P образует с центральной осью линзы угол . Линза преломит луч света таким образом, что после того, как он выйдет из ее толщи через заднюю поверхность, он пересечет ось под другим углом, который мы обозначим . Точку его пересечения с осью симметрии линзы обозначим F (см. рис. 16а). Нам требуется рассчитать расстояние f, которое отделяет эту точку от линзы, и доказать, что оно не зависит от , за счет чего все параллельные лучи, падающие на линзу горизонтально, пересекают ее центральную ось в точке F. Говорят, что в этом случае лучи фокусируются линзой в точке F, а расстояние f от нее до линзы называется фокусным расстоянием.
Для начала обратим внимание, что длина дуги вдоль передней поверхности линзы от оси линзы до точки P есть доля /360° от полной длины окружности, образующей сферы 2r. С другой стороны, та же самая дуга составляет /360° от полной длины окружности радиусом f, которая равна 2f. Будем считать, что эти две дуги одинаковые, и приравняем их:
Теперь, сокращая в правой и левой частях 360° и 2, получаем пропорцию:
Значит, чтобы рассчитать фокусное расстояние линзы, нужно найти отношение к .
Для этого нужно обратить внимание, что именно происходит с лучом света внутри линзы (см. рис. 16б). Отрезок от центра кривизны C до точки P, в которой горизонтальный луч падает на линзу, перпендикулярен выпуклой сферической поверхности линзы в точке P, поэтому угол между этим перпендикуляром и лучом (то есть угол падения луча) равен . Как известно еще со времен Клавдия Птолемея, если угол достаточно мал (а для тонкой линзы так и есть), то угол между направлением луча в толще стекла и тем же перпендикуляром (то есть угол преломления луча) пропорционален углу падения:
где n > 1 – постоянная величина, называемая коэффициентом преломления, которая зависит от свойств стекла и окружающей среды – чаще всего это воздух (Ферма показал, что n равно скорости света в воздухе, деленной на скорость света в стекле, но нам это знать необязательно). В таком случае угол между лучом света в толще стекла и осью линзы равняется:
Рис. 16.
Это угол между лучом света и перпендикуляром к плоской задней поверхности линзы, под которым луч достигает этой поверхности. Однако, когда луч выходит сквозь заднюю поверхность, он образует другой угол – по отношению к перпендикуляру к этой поверхности. Соотношение между углами и такое же, как в случае, если бы свет шел в противоположную сторону: тогда был бы углом падения, а – углом преломления, то есть = /n, и, следовательно:
Отсюда мы видим, что угол прямо пропорционален , и значит, используя нашу ранее полученную формулу для отношения f/r, получаем:
Это равенство не зависит от , так что, как я и обещал, все лучи света, падающие на линзу горизонтально, собираются ею в одну и ту же точку на ее оси симметрии.
Если радиус кривизны r очень большой, кривизна у передней поверхности линзы маленькая, и поэтому линза ведет себя почти как плоский кусок стекла – преломление света на входе в линзу почти компенсируется преломлением на выходе. Также, если коэффициент преломления n близок к 1, линза очень слабо преломляет свет, какой бы формы она ни была. И в том, и в другом случае фокусное расстояние будет очень большим, и тогда мы говорим, что такая линза слабая. Сильная же линза – это линза со средним радиусом кривизны и коэффициентом преломления, существенно отличающимся от 1. Например, для стеклянной линзы n 1,5.
Похожий результат получается и в том случае, если задняя поверхность линзы не плоская, а представляет собой сегмент сферы радиусом r’. В этом случае фокусное расстояние рассчитывается как:
Результат получается таким же, как раньше, в том случае, если r’ значительно больше r, – тогда задняя поверхность получается практически плоской.
Понятие о фокусном расстоянии можно распространять и на вогнутые линзы, как, например, такую линзу, которую Галилео Галилей использовал в качестве окуляра своего телескопа. Вогнутая линза может превратить сходящийся пучок лучей света в параллельный или даже в расходящийся. Можно определить фокусное расстояние линзы, рассматривая такой сходящийся пучок лучей, который она выпрямляет: тогда фокусным расстоянием будет расстояние от линзы до той точки, где исходные лучи сошлись бы, если бы линзы на их пути не было. И хотя у него иной смысл, фокусное расстояние вогнутой линзы рассчитывается по формуле, аналогичной той, которую мы вывели для выпуклой линзы.