Объясняя мир. Истоки современной науки
Шрифт:
где и – еще два коэффициента, которые определяют, соответственно, угол наклона и высоту расположения плоскости (координаты мы определяем таким образом, что плоскость оказывается параллельной оси y). Совмещая равенства (8) и (9), получаем:
или, что то же самое,
Можно
Обратите внимание, что отсюда e = , и это значит, что эксцентриситет зависит от формы конуса и от наклона секущей его плоскости, но не от высоты, на которой располагается эта плоскость.
19. Элонгации и орбиты внутренних планет
Одним из выдающихся достижений Коперника было вычисление определенных значений для относительных размеров планетных орбит. Один простой пример – расчет радиусов орбит внутренних планет по величине их максимального видимого удаления от Солнца.
Рис. 13. Расположение Земли и внутренней планеты (Меркурия или Венеры) в момент наибольшего видимого удаления этой планеты от Солнца. Орбиты планеты и Земли изображены в виде двух окружностей.
Рассмотрим орбиту одной из внутренних планет, Меркурия или Венеры, приближенно полагая, что и орбита Земли, и орбита этой планеты – окружности, центр которых совпадает с Солнцем. В момент, который принято называть максимальной элонгацией, планета видна на небе на угловом расстоянии max от Солнца. В это время отрезок, соединяющий Землю и планету, есть часть прямой, касательной к ее орбите, поэтому угол между этой прямой и радиусом, проведенным от Солнца к планете, является прямым. Значит, эти два отрезка вместе с отрезком, соединяющим Землю с Солнцем, образуют прямоугольный треугольник (см. рис. 13). Гипотенузой в нем является радиус земной орбиты, поэтому отношение радиуса планетной орбиты rп к расстоянию между Землей и Солнцем rз есть синус угла max. Ниже приведена таблица углов максимальной элонгации, их синусов и реальных значений радиусов орбит rп Меркурия и Венеры, выраженных в единицах радиуса земной орбиты rз:
Небольшие различия между значениями синуса max и наблюдаемыми отношениями орбитальных радиусов rп/rз для внутренних планет к радиусу орбиты Земли объясняются отличиями в форме реальных орбит от идеальных окружностей с Солнцем в центре, а также тем фактом, что орбиты располагаются не строго в одной плоскости.
20. Суточный параллакс
Представим себе «новую звезду» или иной астрономический объект, который неподвижен относительно звезд или очень незначительно перемещается по отношению к ним в течение суток. Допустим, что он находится гораздо ближе к Земле, чем звезды. Далее можно либо принять точку зрения, что Земля делает один оборот вокруг своей оси с востока на запад, либо что звезды вместе с этим объектом вращаются вокруг неподвижной Земли раз в сутки с запада на восток. В любом случае,
Для расчета величины этого углового сдвига необходимо для фиксированной наблюдательной площадки на Земле определить видимое расположение объекта среди звезд два раза: первый раз – когда он лишь появляется над горизонтом и второй раз – когда он находится выше всего на небе. Для того чтобы показать примерный расчет, рассмотрим простейший в геометрическом отношении случай: обсерватория расположена на экваторе, и объект находится в одной плоскости с экватором Земли. Конечно, это было не так в том случае, когда Тихо Браге измерял параллакс сверхновой звезды, но так мы тоже можем получить величину того же порядка.
Луч зрения от наблюдателя, направленный в сторону объекта, проходит по касательной к поверхности Земли в тот момент, когда он восходит над горизонтом, поэтому угол между этим лучом и направлением от обсерватории в центр Земли – прямой. Отрезки, соединяющие наблюдателя, центр Земли и объект, таким образом, образуют прямоугольный треугольник (см. рис. 14). Синус угла в этом треугольнике равен отношению противолежащего катета, радиуса Земли rз, к гипотенузе, расстоянию d от центра Земли до объекта, которое мы измеряем. Как видно из чертежа, этот же угол равен видимому смещению объекта на фоне удаленных звезд между моментом его появления над горизонтом и кульминацией. Полное смещение за время от восхода объекта до его захода составит 2.
Рис. 14. Использование суточного параллакса для определения расстояния d от Земли до астрономического объекта. Здесь показан вид в плане со стороны южного полюса Земли. Для простоты примера наблюдатель расположен на экваторе, а наблюдаемый объект находится в той же самой плоскости, что и экватор. Две прямые, пересекающиеся под углом , – это направления от наблюдателя к объекту в моменты его восхода над горизонтом и шесть часов спустя, во время его кульминации прямо в зените для наблюдателя.
Например, если мы предположим, что наблюдаемый объект находится от нас так же далеко, как Луна, то d 400 000 км, rз 6400 км, поэтому sin 6,4/400, и, таким образом, 0,9°, а полный суточный параллакс составляет 1,8°. При наблюдении объекта из иной произвольной точки на Земле, такой как остров Вен (например, сверхновой 1572 г.), ожидаемый суточный параллакс должен быть меньше, но все равно того же порядка величины – около 1°. Этого более чем достаточно, чтобы такой опытный астроном, как Браге, измерил бы его и без увеличительных инструментов. Однако Тихо Браге не удалось, наблюдая сверхновую, заметить наличие у нее какого-либо суточного параллакса, из чего он заключил, что звезда находится гораздо дальше Луны. Кроме того, надо отметить, что и параллакс самой Луны был измерен без труда, что стало способом измерения расстояния между Землей и Луной.
21. Правило равных площадей и эквант
Согласно Первому закону Кеплера, все планеты, включая Землю, обращаются вокруг Солнца по эллиптическим орбитам, причем Солнце находится не в их центрах, а в некоторых смещенных от центра точках, расположенных на больших осях этих эллипсов – в одном из фокусов эллипса каждой из орбит (см. техническое замечание 18). Эксцентриситет эллипса e определяется так, что расстояние от любого его фокуса до центра равно ea, где a – длина большой полуоси эллипса. Также, согласно Второму закону Кеплера, скорость каждой планеты при ее перемещении по орбите не постоянна, а изменяется таким образом, что отрезок (или радиус-вектор), проведенный к ней от Солнца, заметает равные по площади участки плоскости за одинаковые отрезки времени.