Чтение онлайн

на главную - закладки

Жанры

Объясняя мир. Истоки современной науки
Шрифт:

Существует другой способ приближенно сформулировать тот же Второй закон, имеющий близкое отношение к старой идее экванта, которую использовал в своей астрономической системе Птолемей. Вместо того чтобы рассматривать отрезок, проведенный к планете от Солнца, рассмотрим отрезок к ней же из другой точки, а именно из пустого фокуса ее эллиптической орбиты. Эксцентриситет e некоторых орбит планет довольно значителен, и им нельзя пренебрегать. Но его квадрат e^2 очень мал для любой планеты. Например, среди планет самый большой эксцентриситет у орбиты Меркурия, для него e = 0,206, а e^2 = 0,042; для Земли же e^2 = 0,00028. Поэтому при вычислении планетных движений достаточно аппроксимировать реальные их законы уравнениями, в которых присутствуют слагаемые, пропорциональные эксцентриситету e,

или независимые от него слагаемые, и игнорировать такие их члены, которые пропорциональны квадрату эксцентриситета e^2 или его степеням высших порядков. В этом приближении Второй закон Кеплера эквивалентен утверждению, что отрезок, проводимый из пустого фокуса планетной орбиты к планете, заметает равные углы за равные промежутки времени. Иначе говоря, эта линия вращается с постоянной угловой скоростью.

На конкретном примере покажем, что если 

 – это скорость, с которой радиус-вектор от Солнца к планете заметает равные площади, а
(фи с точкой) – скорость изменения угла между радиус-вектором от пустого фокуса к той же планете и большой осью ее орбиты, то верно равенство

где O (e^2) – обозначение всех членов, пропорциональных e^2 или степеням e еще более высоких порядков, а R – коэффициент, значение которого зависит от применяемых единиц измерения углов. Если мы меряем углы в градусах, то R = 360°/2 = 57,293…°, то есть угол размером в один радиан. Или мы можем измерять углы в радианах, и тогда R = 1. Второй закон Кеплера гласит, что за одинаковые промежутки времени площадь, заметаемая радиус-вектором планеты, одна и та же. Это значит, что

 – величина постоянная, а, следовательно, что постоянна и с точностью до слагаемых высшего порядка, пропорциональных e^2. Поэтому с достаточной точностью можно сказать, что за заданный промежуток времени угол, на который изменяется радиус-вектор планеты из пустого фокуса ее орбиты, всегда один и тот же.

Что касается описанной Птолемеем теории, центр эпицикла каждой планеты обращается вокруг Земли по круговой орбите, деференту, но Земля находится не в центре деферента. Орбита является эксцентричной, то есть Земля находится в точке, отделенной от центра деферента небольшим расстоянием. Мало того, скорость, с которой центр эпицикла обращается вокруг Земли, не постоянна, и угловая скорость, с которой луч от Земли к этому центру поворачивается, тоже не постоянна. Чтобы детально учесть все особенности наблюдаемого движения планет, Птолемей изобрел понятие экванта. Это точка по другую сторону от центра деферента по отношению к Земле, которая находится на том же расстоянии от центра, что и Земля. Луч, проводимый к центру эпицикла от этого экванта (а не от Земли), и должен был описывать равные углы в одни и те же промежутки времени.

Внимательный читатель уже заметил, что это очень похоже на картину, описываемую законами Кеплера. Конечно, роли Солнца и Земли в астрономических системах мира Птолемея и Коперника противоположны, но пустой фокус эллипса в теории Кеплера играет ту же самую роль, что и эквант в теории Птолемея, а Второй закон Кеплера объясняет, почему введение экванта помогло улучшить теоретические предсказания видимых положений планет по теории Птолемея.

Теперь докажем равенство (1). Определим как угол между большой осью эллипса и отрезком, соединяющим Солнце и планету, и вспомним, что определен как угол между той же большой осью и отрезком, соединяющим планету и пустой фокус. Так же, как в техническом замечании 18, обозначим длины этих отрезков r+ и r– то есть расстояния от Солнца до планеты и от планеты до пустого фокуса орбиты соответственно. Как было показано, они равны

где х – горизонтальная координата точки на эллипсе, то есть расстояние между точкой и прямой, секущей эллипс вдоль его малой оси.

Косинус угла определяется в тригонометрии с использованием прямоугольного треугольника, один из углов

которого равен данному: косинусом называется отношение длины катета, прилежащего к этому углу, к длине гипотенузы треугольника. Поэтому из рис. 15 мы можем записать:

< image l:href="#"/>

Рис. 15. Орбитальное движение планеты по эллипсу. Орбита планеты вычерчена здесь как эллипс, имеющий эксцентриситет (как и на рис. 12) около 0,8 – значительно больше, чем у какой-либо планеты Солнечной системы. Отрезки, обозначенные r+ и r, соединяют планету, соответственно, с Солнцем и с противоположным ему, пустым фокусом эллипса.

Уравнение слева мы можем решить, найдя из него x:

Подставляя результат в формулу для cos , выражаем связь между углами и :

Поскольку равенство справедливо при любых значениях угла , изменение в левой части равенства должно быть равно изменению в правой части при любом изменении . Допустим, мы производим бесконечно малое его изменение (дельта тета). Чтобы рассчитать, насколько изменится , прибегнем к правилу дифференциального исчисления, согласно которому изменение любого угла (это может быть или ) на величину (дельта альфа) приводит к изменению cos на величину – (/R) sin . Оттуда же при изменении любой функции f, такой, например, как знаменатель в уравнении (5), на ничтожно малую величину f изменение в отношении 1/f составляет -f/f2. Приравняв соответствующие изменения с обеих сторон равенства, получаем:

Теперь нам нужна формула, связывающая sin и sin . Для этого посмотрим на рис. 15 и обратим внимание, что вертикальная координата y точки на линии эллипса выражается как y = r + sin , а также y = r - sin , и, поделив их, сократив y, получаем:

Совмещая уравнения (7) и (6), имеем:

Итак, какова же площадь, описываемая радиус-вектором планеты, проведенным от Солнца, когда угол изменяется на ? Измеряя углы в градусах, мы можем сказать, что это площадь равнобедренного треугольника, две равные стороны которого имеют длину r+, а третья – маленькая часть дуги общей длиной 2r+ окружности радиусом r+, равная 2r+ x /360°. Она равна

В этой формуле поставлен минус, поскольку мы хотим, чтобы величина A росла, если увеличивается угол ; но если вспомнить, как мы определили эти углы, будет расти в том случае, если уменьшается , поэтому больше нуля, когда меньше нуля. Поэтому уравнение (8) можно переписать в виде:

Принимая, что A и – описываемая первым радиус-вектором площадь и угол поворота второго радиус-вектора за ничтожно малый промежуток времени t, и поделив обе части уравнения (10) на t, найдем соответствие между описываемыми площадями и углами в виде равенства

Поделиться:
Популярные книги

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Боец с планеты Земля

Тимофеев Владимир
1. Потерявшийся
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Боец с планеты Земля

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Хозяйка заброшенного поместья

Шнейдер Наталья
1. Хозяйка
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка заброшенного поместья

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец