Чтение онлайн

на главную - закладки

Жанры

Очерки истории отечественной программной инженерии в 1940-е – 80-е годы
Шрифт:

С.А. Лебедев очень точно определил направление развития вычислительной техники. Ее передовым фронтом он считал высокопроизводительные вычислительные системы. Сергей Алексеевич отстоял основное направление работы ИТМ и ВТ – высокопроизводительные вычислительные системы, несмотря на то, что впоследствии Институту предлагали главную роль в стране по разработке вычислительной техники на базе прототипов ЕС ЭВМ. Он считал, что развитие вычислительной техники определяют сверхвысокопроизводительные системы и страна должна иметь самостоятельное направление в этой области.

С 1953-го года в стране был налажен серийный выпуск вычислительных машин. Первой в серию пошла ЭВМ «Стрела», созданная в СКБ-245 под руководством Ю.Я. Базилевского. Основные характеристики ЭВМ «Стрела»:

• ЭВМ была разработана

на обычных для того времени радиолампах общим количеством ~ 6000 штук;

• быстродействие 2000 операций в секунду, тактовая частота 50КГц, команды трехадресные;

• оперативная память содержала 2048 ячеек, ячейка, в которой размещались трехадресная команда или число, содержала 43 двоичных разряда, оперативная память была выполнена на электронно-лучевых трубках (ЭЛТ), каждый разряд запоминался на отдельной трубке;

• общая потребляемая мощность составляла ~ 150 кВт, что создавало значительные проблемы с теплоотводом;

• оперативным средством связи пользователей являлся центральный пункт управления. Он содержал по 3 ряда тумблеров и индикаторов (по 43 неоновых лампочек каждый) и ряд индикаторов адреса выполняемой команды.

Несмотря на обилие радиоламп с ограниченным гарантийным сроком службы (до 500 часов) конструктивная реализация ЭВМ позволила довести среднее полезное время работы до 20 часов в сутки, но машина все равно с трудом справлялась с потоком задач. Из-за периодических сбоев при работе ЭВМ задачи считались с «двойным просчётом» и со сравнением контрольных сумм результатов.

Первыми программистами были выпускники ведущих вузов с физико-математической специализацией.

Они, в большинстве случаев, получив начальную постановку задачи и исходные данные, участвовали в её формализации, в разработке и отладке алгоритма и программы, зачастую выполняли функции операторов в организации вычислений.

БЭСМ-2 была создана С.А. Лебедевым в 1957 году как серийный аналог уникальной БЭСМ-1 и нашла применение в ряде НИИ СССР и за рубежом для численного решения широкого круга математических задач. Основные технические характеристики были аналогичны характеристикам БЭСМ, система команд машины отличалась тем, что были исключены редко использовавшиеся команды и добавлены некоторые новые команды. Системное программное обеспечение в этих машинах отсутствовало. На серийных машинах БЭСМ-2 были решены тысячи задач: чисто теоретических, прикладной математики, инженерных. В частности, рассчитывались траектории полета первых космических аппаратов. Машина была разработана и внедрена в народное хозяйство коллективами ИТМ и ВТ АН СССР и завода им. Володарского (г. Ульяновск) в 1958-м году и производилась до 1962-го года.

В первую очередь, ЭВМ «Стрела» и БЭСМ-2 задействовали в военных целях – для изучения термоядерных реакций, расчета баллистических траекторий ракет и так далее. В 1956-м году Лебедев выступил с докладом на конференции в западногерманском городе Дармштадте. Академик устроил переполох, рассказав миру о том, что в СССР действует сверхбыстрая ЭВМ, – оказалось, что в Европе машине БЭСМ-1 не было равных.

Дальнейшее развитие вычислительных систем на протяжении нескольких лет было эволюционным. В 1958-м году на арену вышла система БЭСМ-2 с внешней памятью на основе ферритовых сердечников и увеличенным набором исходных команд. Впервые ЭВМ подготовили к серийному производству. Первые серьезные шаги по развитию централизованной производственной базы гражданских сфер применения ЭВМ были сделаны в конце 50-х годов после успешного завершения работ по созданию первых в нашей стране промышленных, универсальных вычислительных машин М-20 (см. рис. 1). В 1958-м году в серию пошла машина М-20, созданная в коллективе С.А. Лебедева в ИТМ и ВТ (зам. главного конструктора М.К. Сулим и М.Р. Шура-Бура) [1, 3]. Скорость решения задач напрямую зависела от подготовленности программиста, – он должен был быстро реагировать на сбои, ошибки, отлично ориентироваться в переключателях пульта управления. Первые попытки реализовать системный язык программирования С.А. Лебедев предпринял еще при разработке М-20, машина понимала некоторые наглядные и интуитивные команды, мнемокоды. Это существенно расширило круг специалистов, способных взаимодействовать с ЭВМ.

Эта машина сыграла большую роль в развитии программирования, а позже на ее базе была создана транзисторная машина М-220. Создание машины М-20 являлось выдающимся достижением в развитии советской техники универсальных цифровых вычислительных машин. По своему быстродействию машина М-20 превосходила существовавшие отечественные и серийные зарубежные вычислительные машины. Благодаря большому быстродействию, совершенству логической структуры и развитой системе оперативных и внешних запоминающих устройств, а также высокой надежности машины,

она позволяла решать множество сложных задач, выдвигавшихся отраслями науки и техники.

Машина М-20 и ее аналог БЭСМ-4 имели следующие технические характеристики: быстродействие 20 тыс. операций в секунду, оперативная память на ферритовых сердечниках емкостью 4096 слов, представление чисел с плавающей запятой, разрядность 45, система элементов – ламповые и полупроводниковые схемы, внешняя память – магнитные барабаны и ленты, а также особенности:

• впервые в отечественной практике была применена автоматическая модификация адреса;

• совмещение работы арифметического устройства и выборки команд из памяти;

• введение буферной памяти для массивов, выдаваемых на печать, совмещение печати со счетом;

• использование накопителя на магнитной ленте с быстрым пуском и остановом;

• для М-20 разработана одна из первых технологических систем программного обеспечения ИС-2 (Институт прикладной математики АН СССР).

Вслед за М-20 были разработаны и освоены в серийном производстве машины «Урал-1», «Минск-1». Они вместе с их полупроводниковыми наследниками (М-220, Урал-11-14, Минск-22 и -32), созданными в 60-е годы, были основными в СССР, практически до освоения в серийном производстве машин третьего поколения, т. е. до начала 70 – х годов [1, 3]. Основную нагрузку по выпуску этих машин приняли на себя коллективы Московского завода САМ, Пензенского завода ВЭМ, а также вступившие в строй в 1959-м году Казанский завод ЭВМ, Минский завод математических машин, Астраханский завод «Прогресс» и ряд других предприятий. В эти же годы была существенно расширена научно-исследовательская и конструкторская база: в 1956-м году созданы НИИУВМ (Пенза) и НИИММ (Ереван); в 1958-м году – НИИ-250 (Пенза), а также ряд конструкторские бюро на заводах.

В середине 50-х годов в оборонных отраслях

промышленности и в организациях министерства обороны страны проявился интерес к применению цифровых вычислительных машин для решения задач обработки информации и управления в системах военного назначения. Начались активные, секретные работы по освоению применения цифровой вычислительной техники для систем противовоздушной и противоракетной обороны, для контроля космического пространства и управления полетом в авиации и в космосе, для управления войсками и средствами вооружения разных видов. Многие из этих задач принципиально отличались по своему характеру и масштабу от ставших к тому времени традиционными вычислительных задач в гражданских областях и в науке. В них преобладали: логические операции, большая размерность, реальный масштаб времени и ряд других специфических свойств и требований. Очень быстро увеличивались номенклатура и объем функций систем, которые требовалось автоматизировать. Для реализации таких функций были необходимы значительные ресурсы памяти и производительности ЭВМ, а также большие коллективы специалистов, способные создавать крупные комплексы алгоритмов и программ в допустимые сроки. Уже первые комплексы программ военного назначения в 50-е годы достигали нескольких десятков тысяч команд, для чего было необходимо разрабатывать и применять некоторые методы программной инженерии. В результате начало активно развиваться специфическое направление вы числительной техники и программирования для крупных систем реального времени оборонного назначения [3, 9].

Это направление почти одновременно начало формироваться в оборонных отраслях промышленности и на предприятиях в нескольких проблемноориентированных областях: для сухопутных, авиационных, морских, ракетных и других систем. Для последующего развития вычислительной техники существенными оказались особые требования заказчиков различных областей применения. В результате ЭВМ разделились на два класса: на стационарные, работающие в помещениях, и на мобильные, размещаемые на подвижных (транспортабельных) или движущихся (бортовых) объектах (в том числе, необслуживаемых). Эти факторы определили большие принципиальные различия в архитектуре, технических, климатических и массогабаритных характеристиках этих двух классов, специализированных ЭВМ оборонного назначения, а также в программировании для них. Первый класс тяготел к архитектурам и конструктивам стационарных, универсальных ЭВМ с необходимыми расширениями и модификациями для специализированного применения. Машины второго класса – мобильные, отличались наибольшей спецификой свойств задач и характеристик внешней среды применения, от остальных типов ЭВМ.

Поделиться:
Популярные книги

Невеста напрокат

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Невеста напрокат

Инквизитор Тьмы

Шмаков Алексей Семенович
1. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Прорвемся, опера! Книга 3

Киров Никита
3. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 3

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Королева Солнца. Предтечи. Повелитель зверей. Кн. 1-17

Нортон Андрэ
Королева Солнца
Фантастика:
фэнтези
6.25
рейтинг книги
Королева Солнца. Предтечи. Повелитель зверей. Кн. 1-17

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов