Организация как система. Принципы построения устойчивого бизнеса Эдвардса Деминга
Шрифт:
Эксперимент можно провести с очень простым оборудованием:
1. Воронка вроде той, что найдется в любой кухне или гараже.
2. Штатив-держатель для воронки, например настольная лампа, к которой воронку можно прикрепить проволокой.
3. Небольшой шарик, который может пройти в отверстие воронки.
4. Стол или другая горизонтальная поверхность, покрытая мягким отстирывающимся материалом, предпочтительно глаженым, чтобы не было складок.
5. Тонко пишущая ручка со смываемыми чернилами.
6. Линейка или любой другой прибор для измерения расстояния и углов, не обязательно с большой точностью.
Мишень
Правило 1. Самое легкое: не двигайте воронку безотносительно к тому, где шарик останавливается. Компьютерное моделирование ста последовательных бросаний шарика в соответствии с правилом 1 дает результат, показанный на рисунке 13. Нет ничего удивительного в том, что мы получаем фигуру рассеяния приблизительно в форме круга с центром на мишени.
Это не совсем то, чего нам хотелось бы. Давайте постараемся улучшить дело.
«Давайте же что-нибудь делать. Не сидите просто так. Нужно что-то предпринять. Двигайте воронку».
В соответствии с правилами 2 и 3, воронка двигается таким образом, чтобы скомпенсировать то расхождение, на которое шарик отклонился от мишени. Мы опишем эти правила в обратном порядке, поскольку правило 3 (используя нумерацию Деминга) – относительно грубая попытка компенсации, в то время как правило 2 – более тонкая. Правило 3 работает следующим образом. Предположим, шарик остановился в шести дюймах к востоку от центра мишени. Тогда воронка двигается на запад от центра перед следующим броском. Или, если шарик останавливается на четыре дюйма на юго-запад от мишени, воронка двигается так, чтобы прицеливаться в точку на четыре дюйма на северо-восток от мишени перед следующим бросанием.
Очевидная слабость правила 3 в том, что при определении следующего положения воронки оно не принимает во внимание положения, занимаемого ею в текущий момент. Последствия этого легко проследить, если провести соответствующий эксперимент. Читатель может попробовать прорисовать эту ситуацию и выяснить, какое поведение будет наблюдаться в соответствии с правилом 3, прежде чем посмотреть на рисунок 15.
Правило 2 демонстрирует более разумную позицию передвижения воронки относительно ее предшествующего положения, а не по отношению к цели. Поэтому, возвращаясь к предшествующей иллюстрации, предположим, что шарик остановился в шести дюймах к востоку от мишени. Правило 2 двигает воронку на шесть дюймов к западу от ее текущего положения. И если на следующем шаге шарик находится в четырех дюймах на юго-запад от мишени, то воронка двигается на четыре дюйма к северо-западу от ее текущего положения.
Рисунки 14 и 15 показывают характер расположения точек остановки шарика при использовании правил 2 и 3 соответственно.
«Правило 3. Осцилляции, взад-вперед, с постепенно возрастающей амплитудой, пока не произойдет “взрыв”».
Причина для осцилляций такова: если воронка, скажем, нацелена на три единицы к востоку от мишени, то и шарик, по всей видимости, закончит движение где-то в этой области, что предполагает правило 3; затем сдвинем воронку ориентировочно на три единицы к западу от мишени в следующем бросании. После этого она вернется назад на восток и т. д.
А теперь с надеждой обратимся к результатам «улучшенного» правила 2. Но какое разочарование! Конечно, дела не обстоят так же откровенно плохо, как в случае с правилом 3. Итак, мы вернулись к ситуации, дающей практически ту же круговую форму рассеивания результатов вокруг мишени. Но круг теперь больше, чем он был, т. е. разброс вырос и ухудшилось качество. В действительности (хотя это нельзя рассчитать) любой разумный подход к измерению площадей двух кругов показывает, что площадь в случае использования правила 2 вдвое превышает площадь, соответствующую правилу 1.
Итак, великая идея оказалась никуда негодной. Что делать? По всей видимости, следует забыть о цели и в интересах улучшения качества сконцентрироваться на минимизации изменчивости между последующими бросаниями шарика. Таким образом, мы можем как минимум улучшить однородность и воспроизводимость, хотя и сконцентрироваться на каком-то положении, отличном от первоначальной цели. Имеется очевидный путь к достижению этой цели. (Читатель не может видеть, что мой язык от старания уже высунут наружу, поэтому я сам говорю об этом!) Это дает нам правило 4: на каждом шаге располагайте воронку непосредственно над тем положением, где шарик только что приземлился.
Ну что ж, одна часть этого описания верна. Правило 4 действительно минимизирует вероятное расстояние между отметками двух последующих бросаний. Поэтому на небольшом временном интервале это правило, кажется, действительно имеет некоторый смысл. Но будьте осторожны! Что произойдет в перспективе? Ответ ищите на рисунке 16. Поведение практически такое же плохое, как в случае правила 3:
«Система взрывается».
По мере продолжения эксперимента у шарика проявляется тенденция удаляться все дальше и дальше от мишени. Этому не приходится удивляться, учитывая, что мишень не фигурирует в наших вычислениях месторасположения воронки. Единственное настоящее отличие от правила 3 – положение шарика не колеблется с одной стороны картины к другой, оно непрерывно удаляется от центра в некотором общем направлении.
«Все это ведет лишь к ухудшению положения дел!»