Ответы на экзаменационные билеты по эконометрике
Шрифт:
Представим данную теорему в векторной форме:
Общую сумму квадратов можно представить следующим образом:
Если в модель регрессии не включается свободный член 0, то данное разложение также остаётся верным.
Парный коэффициент детерминации может быть рассчитан через теорему о о разложении сумм квадратов результативной переменной по следующим формулам:
или
25.
Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных моделей, с помощью которых можно спрогнозировать поведение результативной переменной в зависимости от поведения факторных переменных.
Рассмотрим подробнее процесс прогнозирования для линейной модели парной регрессии.
Точечный прогноз результативной переменной у на основе линейной модели парной регрессии при заданном значении факторной переменной хm будет осуществляться по формуле:
ym=0+1xm+m.
Точечный прогноз результативной переменной ym с доверительной вероятностью или (1–а) попадает в интервал прогноза, определяемый как:
ym–t*(m)<= ym<= ym+t*(m),
t – t-критерий Стьюдента, который определяется в зависимости от заданного уровня значимости a и числа степеней свободы (n-2) для линейной модели парной регрессии;
(m) – величина ошибки прогноза в точке m.
Для линейной модели парной регрессии величина ошибки прогноза определяется по формуле:
где S2 – несмещённая оценка дисперсии случайной ошибки линейной модели парной регрессии.
Рассмотрим процесс определения величины ошибки прогноза (m).
Предположим, что на основе выборочных данных была построена линейная модель парной регрессии вида:
Факторная переменная х в данной модели представлена в центрированном виде.
Задача состоит в расчёте прогноза результативной переменной у при заданном значении факторной переменной хm, т. е.
Математическое ожидание результативной переменной у в точке m рассчитывается по формуле:
Дисперсия результативной переменной у в точке m рассчитывается по формуле:
где D(0) – дисперсия оценки параметра 0 линейной модели парной регрессии, которая рассчитывается по формуле:
Следовательно, точечная оценка прогноза результативной переменной у в точке m имеет нормальный закон распределения с математическим ожиданием
и
Если в формулу дисперсии результативной переменной у в точке m вместо дисперсии G2 подставить её выборочную оценку S2, то получим доверительный интервал для прогноза результативной переменной у при заданном значении факторной переменной хm:
где выборочная оценка генеральной дисперсии S2 для линейной модели парной регрессии рассчитывается по формуле:
В этом случае прогнозный интервал можно преобразовать к виду:
что и требовалось доказать.
26. Линейная модель множественной регрессии
Построение модели множественной регрессии является одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.
Модель множественной регрессии строится в том случае, если коэффициент множественной корреляции показал наличие связи между исследуемыми переменными.
Общий вид линейной модели множественной регрессии:
yi=0+1x1i+…+mxmi+i,
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
0…m – неизвестные коэффициенты модели множественной регрессии;
i – случайные ошибки модели множественной регрессии.
При построении нормальной линейной модели множественной регрессии учитываются пять условий:
1) факторные переменные x1i…xmi – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии i;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т.е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: i~N(0, G2).