Ответы на экзаменационные билеты по эконометрике
Шрифт:
Частные коэффициенты корреляции также можно рассчитать через коэффициент множественной детерминации.
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi:
где
– множественный коэффициент детерминации двухфакторной модели регрессии.
Данный
При проверке значимости частных коэффициентов корреляции выдвигается основная гипотеза о незначимости данных коэффициентов, например:
Н0:ryx/z=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1:ryx/z/=0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента. Критическое значение t-критерия tкрит(а,n-h) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n– h) – число степеней свободы. Для модели двухфакторной регрессии число степеней свободы равно (n-3).
Наблюдаемое значение t-критерия рассчитывается по формуле (на примере частного коэффициента корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi):
Если |tнабл|<=tкрит, то основная гипотеза не отклоняется, и частный коэффициент корреляции является незначимым. Следовательно, между переменными х и у при постоянном значении переменой z корреляционная связь отсутствует.
Если |tнабл|>tкрит, то основная гипотеза отклоняется в пользу конкурирующей гипотезы с вероятностью совершения ошибки первого рода а. В этом случае можно считать, что между переменными х и у при постоянном значении переменной z существует корреляционная зависимость.
Частные коэффициенты корреляции позволяют сделать вывод об обоснованности включения переменной в модель регрессии. Если значение частного коэффициента корреляции мало или коэффициент незначим, то связь между данной факторной переменной и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели без ущерба для её качества.
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между результативной переменной и одной из факторных переменных при постоянстве остальных факторных переменных, включённых в модель.
Для модели множественной регрессии с тремя факторными переменными рассчитываются частные коэффициенты, как первого, так и второго порядка.
Общий вид модели трёхфакторной регрессии:
yi=0+1x1i+2x2i+3x3i+i,
где yi – результативная переменная,
x1i – первая факторная переменная;
x2i – второй факторная переменная;
x3i –
0,1,2,3 – неизвестные коэффициенты модели регрессии;
i – случайная ошибка модели регрессии.
Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.
Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.
Частный коэффициент корреляции между результативной переменной у и факторной переменной х1 при постоянстве факторных переменных х2 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х2 при постоянстве факторных переменных х1 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х3 при постоянстве факторных переменных х1 и х1:
Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.
Следовательно, частный коэффициент корреляции порядка t может быть построен через частный коэффициент корреляции (t-1) порядка. Формулы, построенные через указанную взаимосвязь, называются рекуррентными.
При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции (n-1) порядка рассчитывается по общей формуле:
Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для моделей множественной регрессии, возможно также построение этих показателей с помощью показателя остаточной дисперсии.
В случае линейной модели парной регрессии показатель остаточной дисперсии определяется по формуле:
где
– это оценка модели парной регрессии с независимой переменной х1.
Если в линейную модель парной регрессии включить новую независимую переменную х2, то можно вычислить показатель остаточной дисперсии для линейной модели регрессии с двумя независимыми переменными: