Ответы на экзаменационные билеты по эконометрике
Шрифт:
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y=X* +,
Где
– случайный вектор-столбец значений результативной переменной размерности (n*1);
– матрица значений факторной переменной размерности (n*(m+1)). Первый столбец является единичным, потому что в модели регрессии коэффициент 0 умножается на единицу;
– вектор-столбец
– случайный вектор-столбец ошибок модели регрессии размерности (n*1).
Включение в линейную модель множественной регрессии случайного вектора-столбца ошибок модели обусловлено тем, что практически невозможно оценить связь между переменными со 100-процентной точностью.
Условия построения нормальной линейной модели множественной регрессии, записанные в матричной форме:
1) факторные переменные x1j…xmj – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии i. В терминах матричной записи Х называется детерминированной матрицей ранга (k+1), т.е. столбцы матрицы X линейно независимы между собой и ранг матрицы Х равен m+1<n;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) предположения о том, что дисперсия случайной ошибки модели регрессии является постоянной для всех наблюдений и ковариация случайных ошибок любых двух разных наблюдений равна нулю, записываются с помощью ковариационной матрицы случайных ошибок нормальной линейной модели множественной регрессии:
где
G2 – дисперсия случайной ошибки модели регрессии ;
In – единичная матрица размерности (n*n).
4) случайная ошибка модели регрессии является независимой и независящей от матрицы Х случайной величиной, подчиняющейся многомерному нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: ->N(0;G2In.
В нормальную линейную модель множественной регрессии должны входить факторные переменные, удовлетворяющие следующим условиям:
1) данные переменные должны быть количественно измеримыми;
2) каждая факторная переменная должна достаточно тесно коррелировать с результативной переменной;
3) факторные переменные не должны сильно коррелировать друг с другом или находиться в строгой функциональной зависимости.
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
В общем виде линейную модель множественной регрессии можно записать следующим образом:
yi=0+1x1i+…+mxmi+i,
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
0…m – неизвестные коэффициенты модели множественной регрессии;
i – случайные ошибки модели множественной регрессии.
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). Суть метода наименьших квадратов состоит
Матричная форма функционала F метода наименьших квадратов:
где
– случайный вектор-столбец значений результативной переменной размерности (n*1);
– матрица значений факторной переменной размерности (n*(m+1)). Первый столбец является единичным, потому что в модели регрессии коэффициент 0 умножается на единицу;
В процессе минимизации функции (1) неизвестными являются только значения коэффициентов 0…m, потому что значения результативной и факторных переменных известны из наблюдений. Для определения минимума функции (1) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (1):
где
– вектор-столбец неизвестных коэффициентов модели регрессии размерности ((m+1)*1);
Общий вид стационарной системы уравнений для функции (1):
Решением стационарной системы уравнений будут МНК-оценки неизвестных параметров линейной модели множественной регрессии:
Оценим с помощью метода наименьших квадратов неизвестные параметры линейной модели двухфакторной регрессии:
yi=0+1x1i+2x2i+i,
где
Чтобы рассчитать оценки неизвестных коэффициентов 0,1 и 2 данной двухфакторной модели регрессии, необходимо минимизировать функционал F вида:
Для определения экстремума функции нескольких переменных, частные производные по этим переменным приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для модели множественной линейной регрессии с двумя переменными:
В результате элементарных преобразований данной стационарной системы уравнений получим систему нормальных уравнений:
Данная система называется системой нормальных уравнений относительно коэффициентов
для модели регрессии yi=0+1x1i+2x2i+i.
Полученная система нормальных уравнений является квадратной, т. к. количество уравнений равняется количеству неизвестных переменных, поэтому коэффициенты