Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

Медианным лагом называется период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у.

Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:

1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;

2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных (xt,xt–1,xt–2,…),

что в конечном результате ведёт к потере числа степеней свободы в модели;

3) наличие проблема автокорреляции остатков.

Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.

Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.

97. Метод Алмон

Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.

Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L:

yt=0+1xt+2xt–1+…+Lxt–L+t. (1)

Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.

Алгоритм метода Алмон реализуется в несколько этапов:

Суть метода Алмон состоит в следующем:

1) зависимость коэффициентов при факторных переменных i от величины лага i аппроксимируется полиномиальной функцией:

а) первого порядка i=c0+c1*i

б) второго порядка

в) третьего порядка

г) в общем случае полиномиальной функцией порядка P:

Алмон доказал, рассчитать оценки коэффициентов

намного проще, чем найти оценки непосредственно коэффициентов i. Подобный метод оценивания коэффициентов i называется полиномиальной аппроксимацией.

2) каждый коэффициент модели (1) можно выразить следующим образом:

1=c0;

2=c0+c1+…+cP;

3=c0+2c1+4c2+…+2PcP;

4=c0+3c1+9c2+…+3PcP;

L=c0+Lc1+L2c2+…+LPcP.

Подставим полученные выражения для коэффициентов i в модель (1):

yt=0+c0xt+( c0+c1+…+cP)xt–1+…+( L=c0+Lc1+L2c2+…+LPcP)xt–L+t.

3) в полученном выражении перегруппируем слагаемые:

Обозначим слагаемые в скобках при коэффициентах

как новые переменные:

С учётом новых

переменных модель примет вид:

yt=0+c0z0+c1z1+…+cPzP+t. (2)

4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов

5) найдём оценки коэффициентов

модели (1), используя соотношения, полученные на первом шаге.

К основным недостаткам метода Алмон относятся:

1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага L можно с помощью вычисления показателей тесноты связи, например, линейных парных коэффициентов корреляции, между результативной переменной у и лаговым значением факторной переменной х. Если показатель тесноты связи является значимым, то данную переменную необходимо включить в модель с распределённым лагом. Порядок максимального значимого показателя тесноты связи принимается в качестве максимальной величины лага L;

2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;

3) если между факторные переменные коррелируют друг с другом, то новые переменные

которые являются линейной комбинацией факторных переменных x, будут также коррелировать между собой. Поэтому проблема мультиколлинеарности в преобразованной модели (2) устранена не полностью. Однако мультиколлинеарность новых переменных zi в меньшей степени отражается на оценках неизвестных коэффициентов i исходной модели (1), чем при использовании традиционного метода наименьших квадратов к данной модели.

Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.

98. Нелинейный метод наименьших квадратов. Метод Койка

Если модель с распределенным лагом характеризуется бесконечной величиной максимального лага L, то для оценивания неизвестных параметров данной модели применяются нелинейный метод наименьших квадратов и метод Койка. При этом исходят из предположения о геометрической структуре лага, т. е. влияние лаговых значений факторной переменной на результативную переменную уменьшается с увеличением величины лага в геометрической прогрессии.

Если в модель включена только одна объясняющая переменная, то её можно представить в виде:

В модели с распределённым лагом (1) неизвестными являются три параметра: 0, 1 и . Найти оценки данных параметров с помощью традиционного метода наименьших квадратов невозможно по нескольким причинам, поэтому в данном случае используются нелинейный метод наименьших квадратов и метод Койка

Суть нелинейного метода наименьших квадратов заключается в том, что для параметра

Поделиться:
Популярные книги

Институт экстремальных проблем

Камских Саша
Проза:
роман
5.00
рейтинг книги
Институт экстремальных проблем

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Ведьмак. Перекресток воронов

Сапковский Анджей
Фантастика:
фэнтези
5.00
рейтинг книги
Ведьмак. Перекресток воронов

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Весь Карл Май в одном томе

Май Карл Фридрих
Приключения:
прочие приключения
5.00
рейтинг книги
Весь Карл Май в одном томе

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Отцы-основатели. Весь Саймак - 10.Мир красного солнца

Саймак Клиффорд Дональд
10. Отцы-основатели. Весь Саймак
Фантастика:
научная фантастика
5.00
рейтинг книги
Отцы-основатели. Весь Саймак - 10.Мир красного солнца

Хранители миров

Комаров Сергей Евгеньевич
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Хранители миров

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Игрушка для босса. Трилогия

Рей Ольга
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Игрушка для босса. Трилогия

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Жития Святых (все месяцы)

Ростовский Святитель Дмитрий
Религия и эзотерика:
религия
православие
христианство
5.00
рейтинг книги
Жития Святых (все месяцы)

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон