Ответы на экзаменационные билеты по эконометрике
Шрифт:
Медианным лагом называется период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у.
Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:
1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;
2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных (xt,xt–1,xt–2,…),
3) наличие проблема автокорреляции остатков.
Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.
Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.
97. Метод Алмон
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L:
yt=0+1xt+2xt–1+…+Lxt–L+t. (1)
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных i от величины лага i аппроксимируется полиномиальной функцией:
а) первого порядка i=c0+c1*i
б) второго порядка
в) третьего порядка
г) в общем случае полиномиальной функцией порядка P:
Алмон доказал, рассчитать оценки коэффициентов
намного проще, чем найти оценки непосредственно коэффициентов i. Подобный метод оценивания коэффициентов i называется полиномиальной аппроксимацией.
2) каждый коэффициент модели (1) можно выразить следующим образом:
1=c0;
2=c0+c1+…+cP;
3=c0+2c1+4c2+…+2PcP;
4=c0+3c1+9c2+…+3PcP;
…
L=c0+Lc1+L2c2+…+LPcP.
Подставим полученные выражения для коэффициентов i в модель (1):
yt=0+c0xt+( c0+c1+…+cP)xt–1+…+( L=c0+Lc1+L2c2+…+LPcP)xt–L+t.
3) в полученном выражении перегруппируем слагаемые:
Обозначим слагаемые в скобках при коэффициентах
как новые переменные:
С учётом новых
yt=0+c0z0+c1z1+…+cPzP+t. (2)
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
5) найдём оценки коэффициентов
модели (1), используя соотношения, полученные на первом шаге.
К основным недостаткам метода Алмон относятся:
1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага L можно с помощью вычисления показателей тесноты связи, например, линейных парных коэффициентов корреляции, между результативной переменной у и лаговым значением факторной переменной х. Если показатель тесноты связи является значимым, то данную переменную необходимо включить в модель с распределённым лагом. Порядок максимального значимого показателя тесноты связи принимается в качестве максимальной величины лага L;
2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;
3) если между факторные переменные коррелируют друг с другом, то новые переменные
которые являются линейной комбинацией факторных переменных x, будут также коррелировать между собой. Поэтому проблема мультиколлинеарности в преобразованной модели (2) устранена не полностью. Однако мультиколлинеарность новых переменных zi в меньшей степени отражается на оценках неизвестных коэффициентов i исходной модели (1), чем при использовании традиционного метода наименьших квадратов к данной модели.
Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.
98. Нелинейный метод наименьших квадратов. Метод Койка
Если модель с распределенным лагом характеризуется бесконечной величиной максимального лага L, то для оценивания неизвестных параметров данной модели применяются нелинейный метод наименьших квадратов и метод Койка. При этом исходят из предположения о геометрической структуре лага, т. е. влияние лаговых значений факторной переменной на результативную переменную уменьшается с увеличением величины лага в геометрической прогрессии.
Если в модель включена только одна объясняющая переменная, то её можно представить в виде:
В модели с распределённым лагом (1) неизвестными являются три параметра: 0, 1 и . Найти оценки данных параметров с помощью традиционного метода наименьших квадратов невозможно по нескольким причинам, поэтому в данном случае используются нелинейный метод наименьших квадратов и метод Койка
Суть нелинейного метода наименьших квадратов заключается в том, что для параметра
Институт экстремальных проблем
Проза:
роман
рейтинг книги

Мастер Разума IV
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Ведьмак. Перекресток воронов
Фантастика:
фэнтези
рейтинг книги
На границе империй. Том 9. Часть 5
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Весь Карл Май в одном томе
Приключения:
прочие приключения
рейтинг книги
Студиозус 2
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
рейтинг книги
Кодекс Крови. Книга IХ
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Отцы-основатели. Весь Саймак - 10.Мир красного солнца
10. Отцы-основатели. Весь Саймак
Фантастика:
научная фантастика
рейтинг книги
Хранители миров
Фантастика:
юмористическая фантастика
рейтинг книги
