Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

определяются значения в интервале [-1;+1] с определённым шагом, например, 0,05 (чем меньше шаг, тем точнее будет результат).

Для каждого значения рассчитывается переменная z:

zt=xt+xt–1+2xt–2+3xt–3+…+Lxt–L,

с таким значением лага L, при котором дальнейшие лаговые значения переменной x не оказывают существенного влияния на z.

На следующем этапе с помощью традиционного метода наименьших квадратов оценивается модель регрессии вида:

yt=0+1zt+t (2)

и рассчитывается коэффициент детерминации R2.

Данный процесс осуществляется для всех значений из интервала [-1;+1]. Оценками коэффициентов 0, 1 и будут те, которые обеспечивают наибольшее значение R2 для модели регрессии (2).

В основе метода или преобразования Койка лежит предположение о том, что если модель регрессия (1) справедлива для момента времени t, то она справедлива и для момента времени (t–1):

yt–1=0+1xt–1+1xt–2+12xt–3+13xt–4+…+t,

Умножим обе части данного уравнения на и вычтем их из модели регрессии (1). В результате получим выражение вида:

yt– yt–1= 0(1– )+1xt+t– t–1,

или

yt= 0(1– )+1xt+yt–1+t, (2)

где t= t– t–1.

Полученная модель (2) является моделью авторегрессии, что позволяет проанализировать её краткосрочные и долгосрочные динамические свойства.

Значение переменной yt–1 в краткосрочном периоде (в текущем периоде) рассматривается как фиксированное, а воздействие переменной х на переменную у характеризует коэффициент 1.

Если xtв долгосрочном периоде (без учёта случайной компоненты модели) стремится к некоторому равновесному значению 

то yt и yt–1 также будут стремиться к своему равновесному значению, которое вычисляется по формуле:

из чего следует:

Долгосрочное влияние переменной х на переменную у характеризуется коэффициентом

Несмотря на то, что метод Койка очень удобен в вычислительном отношении (оценки параметров 0, 1 и можно рассчитать с помощью традиционного метода наименьших квадратов), оценки, полученные с его помощью, будут смещёнными и несостоятельными, т. к. нарушается первое условие нормальной линейной модели регрессии.

99. Модель адаптивных ожиданий (МАО)

Моделью адаптивных ожиданий называется динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение факторной переменной

в момент времени (t+1).

Общий вид модели адаптивных ожиданий:

Предполагаемое (ожидаемое)

значение переменной

в момент времени (t+1) рассчитывается на основании значений фактических (реальных) переменных в предшествующий момент времени t.

Примером модели адаптивных ожиданий является модель зависимости размера предполагаемой в будущем периоде (t+1) индексации заработных плат и пенсий на текущие цены, или модель зависимости объёма текущих инвестиций в момент времени t от ожидаемого курса валюты в момент времени (t+1).

Механизм формирования ожиданий в модели адаптивных ожиданий можно представить следующим образом:

Следовательно, ожидаемое значение переменной xt в следующий момент времени (t+1) можно определить как среднее арифметическое взвешенное значение её фактического xt и ожидаемого

значений в текущем периоде t.

Величина называется параметром адаптации. Чем больше величина параметра адаптации, тем быстрее ожидаемое значение адаптируется предыдущим фактическим событиям xt. Чем меньше величина данного параметра, тем ближе ожидаемое в будущем значение

к ожидаемому значению предшествующего периода

что характеризует сохранение тенденций в ожиданиях.

Модель адаптивных ожиданий содержит предполагаемые значения факторной переменной, которые нельзя получить эмпирическим путём, поэтому применение традиционного метода наименьших квадратов для оценки неизвестных коэффициентов данной модели невозможно.

Для определения оценок неизвестных коэффициентов исходной модели адаптивных ожиданий (1) её необходимо преобразовать.

Подставим выражение (2) в исходную модель (1):

Исходя из предположения о том, что если модель адаптивных ожиданий (1) верна для момента времени t, то она будет верна и для момента времени (t-1), запишем модель адаптивных ожиданий для периода (t-1):

Умножив данное выражение на (1-), получим:

Далее вычтем почленно полученное выражение из модели (3):

Преобразованная модель (4) является обычной моделью авторегрессии. Оценки неизвестных коэффициентов данной модели можно рассчитать с помощью метода инструментальных переменных. После определения модели авторегрессии можно перейти к оценке параметров исходной модели адаптивных ожиданий (1).

Поделиться:
Популярные книги

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Рейдер 2. Бродяга

Поселягин Владимир Геннадьевич
2. Рейдер
Фантастика:
фэнтези
попаданцы
7.24
рейтинг книги
Рейдер 2. Бродяга

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Одержимый

Поселягин Владимир Геннадьевич
4. Красноармеец
Фантастика:
боевая фантастика
5.00
рейтинг книги
Одержимый

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Наследие Маозари 5

Панежин Евгений
5. Наследие Маозари
Фантастика:
фэнтези
юмористическое фэнтези
5.00
рейтинг книги
Наследие Маозари 5

Наследник павшего дома. Том II

Вайс Александр
2. Расколотый мир [Вайс]
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том II

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Отцы-основатели. Весь Саймак - 10.Мир красного солнца

Саймак Клиффорд Дональд
10. Отцы-основатели. Весь Саймак
Фантастика:
научная фантастика
5.00
рейтинг книги
Отцы-основатели. Весь Саймак - 10.Мир красного солнца