Павлов И.П. Полное собрание сочинений. Том 1
Шрифт:
Рис. 18. Расслабление от раздражения (a) соединительного нерва; b быстрое спонтанное восстановление тонуса.
Рис. 19.
– раздражение соединительного нерва частыми замыканиями; следующее за этим спонтанное, очень медленное восстановление тонуса.
Рис. 20. У а расслабляющее раздражение соединительного нерва рядом замыканий на 1/ секунды, у b раздражение мантии отдельными замыканиями той же длительности.
Рис. 21. У а раздражение соединительного нерва, у в раздражение мантии.
Рис. 22. У a раздражение соединительного нерва рядом замыканий, у с то же для мантийного нерва, b механическое раздражение мантии.
Рис. Рис. 23. Ганглий задней запирательной мышцы сообщается с передней частью животного посредством соединительного нерва. Сокращения задней запирательной мышцы, за которыми следует быстрое расслабление. У+ перерезка соединительного нерва. Сокращения c повышающимся тонусом.
Рис. 24. У расслабление задней запирательной мышцы посредством электрического раздражения соединительного нерва, у b механическое раздражение мантии, восстановление тонуса, c экстирпация ганглия, y + случайное смещение писчика.
Рис. 25. У а электрическое раздражение входного места нерва в заднюю запирательную мышцу.
Рис. 26. У а электрическое раздражение входного места нерва на задней мышце.
Рис. 27. У а повторные
Рис. 28. Передняя запирательная мышца; а - раздражение ее нерва между ганглием и мышцей.
Рис. 29. Раздражение нерва передней мышцы раствором 0.25% азотнокислого калия и 0.6% поваренной соли.
Нервные теплотные центры и их участие в лихорадке
[186]
Жизнь есть сложный химический процесс. А так как теплота есть один из существенных агентов химических реакций, то понятно, что и ход, энергия жизненного процесса должны в высшей степени зависеть от теплоты. И кто не знает, как все функции холоднокровных животных усиливаются и ослабляются почти до полного замирания вместе с повышением и понижением внешней, а следовательно и их температуры. Нет основания ждать, чтобы иначе относилась живая материя высших животных. И действительно, благодаря Пфлюгеру, 2 [187] мы знаем вполне точно, что химическая, а следовательно и жизненная, деятельность высших организмов (раз исключено вмешательство центральной нервной системы) растет и падает строго вместе с температурой их. Отсюда неизбежным условием для более или менее самостоятельного и независимого существования высших животных среди окружающей их природы является постоянство температуры их тела, собственная неколеблющаяся значительно температура. Без этого их жизнедеятельность была бы игрушкой в руках внешних температурных условий.
Животное обыкновенно находится в обстановке, менее нагретой, чем оно само. Несомненно, значит, что организм сам в себе, своей деятельностью, своими химическими процессами производит теплоту. другой стороны, также ясно, что теплота постоянно расходуется из тела ко вне. Следовательно, постоянство собственной температуры тела достигается согласованием, регулированием выработки тепла с его потерей, прихода с расходом. Наиболее полно это может быть, конечно, осуществлено изменениями как в одной статье, так и в другой, соответственно внутренним и внешним условиям. И в крупных чертах это очевидно прямо, при простом наблюдении людей и животных. Человек, с одной стороны, изменяет условия потери тепла (разное жилье и разная одежда в разных климатах и в разные времена года), но, с другой, - отчетливо приноровляться к внешней температуре и пищевым режимам количеством вырабатываемой теплоты. Известно, например, что люди северных стран едят вообще больше южан и особенно много жира, который из всех пищевых веществ более всего доставляет тепла при своем сгорании.
То же и у животных. С одной стороны, например, северные животные вообще более прикрыты, имеют вообще гораздо более развитый покров, чем южные, а с другой - известно, что маленькие животные, вообще более подверженные охлаждению благодаря своей относительно большей поверхности, едят вообще относительно их веса больше крупных.
Перейдем от этих, большею частизвольных или инстинктивных, мер к машинообразным, физиологическим. В высоко нагретой среде кожа краснеет, наливается кровью, начинается усиленное потоотделение и ускоренное дыхание. Это все меры, относящиеся к статье расхода. Остановимся на приливании крови к периферии тела подробнее. Быстрота охлаждения всякого нагретого тела в холодной среде по известному физическому закону тем больше, чем больше разница между температурой тела и окружающей среды. При известной температуре кожи животного и окружающей среды образуется известное отношение, существует известная потеря тепла из тела. Теперь пусть температура среды повышается, приближается к температуре тела. Разница между температурами становится меньше, соответственно уменьшается тепловая потеря тела, и должно произойти (предполагая неизменной выработку тепла в теле) накопление тепла в теле, повышение его температуры. Но в предупреждение сего наступает новое физиологическое обстоятельство: сосуды кожи расширяются, к коже притекает большая масса крови. Так как кожа обыкновенно подвергается охлаждению и оттого внутреннее тело и кровь гораздо теплее ее, то больший прилив теплой крови к коже ведет к нагреванию ее. И, таким образом, прежняя разница между температурами может восстановиться, так что, несмотря на повышение внешней температуры, охлаждение тела будет происходить в прежнем или приблизительно прежнем размере. В случае внешнего холода наш механизм действует обрагно. Таким образом кровообращение является важнейшим регулятором охлаждения. Что до изменений дыхания и потоотделения, то здесь дело ясно само по себе, чтобы на нем не останавливаться. Теперь поднимается важный вопрос: не варьирует ли также в соответствии с внешней температурой и сама выработка тепла в теле? Естественно думать, что в случае, например, повышения внешней температуры не только будут в действии меры для удержания потери в прежнем размере, a прямо сократится и самая выработка тепла как излишняя теперь трата сил. Либермайстеру [188] принадлежит честь этого допущения и первых попыток подтвердить это экспериментом. Либермайстер и его сотрудники показывали, что под влиянием внешнего холода, например холодных ванн, повышается температура тела, производится больше тепла телом и увеличивается количество образуемой угольной кислоты. Что до последнего пункта, то он подтвержден был исследованием Цунца и Рерига, 2 [189] вышедшим из лаборатории Пфлюгера. Другие же данные подвергались более или менее справедливой критике по недостаточности употребленных автором измерительных приемов. В появившейся в 1872 г. работе Сенатора 3 [190] наш вопрос решен был даже в чисто отрицательном смысле. Исследования с водяным калориметром показали автору не увеличение, а уменьшение образуемой телом теплоты при внешней низкой температуре; образуемая же при этом угольная кислота, правда, увеличивается, по Сенатору, но только незначительно. И тем не менее, в настоящее время едва ли можно не считать доказанным анализируемое положение, несмотря на оппозицию Сенатора. После его исследования лаборатория Пфлюгера поистине приложила все старание, чтобы окончательно выяснить дело с изменением газового обмена под влиянием внешнего холода. И ее усилия увенчались успехом: [191] теперь точно установлено, что не только под влиянием экспериментально примененного внешнего холода, но и просто в холодное время года резко увеличивается как количество поглощаемого кислорода, так и
Таким образом едва ли будет отступлением от истины, если мы признаем, что физиологическая регуляция животного тепла происходит на два лада: в соответствии с внешней температурой вступают в деятельность как механизм выработки тепла, так и механизм, заведующий потерей его.
Естественно ожидать, что этот двойной механизм в последней инстанции будет управляться нервной системой, как это мы точно знаем относительно других и даже более простых физиологических механизмов. И что касается до механизма, заведующего потерей, то его иннервация очевидна прямо. Кровообращение, дыхание и потоотделение - все такие деятельности организма, которые находятся под постоянным и строгим нервным контролем.
Некоторые точные факты относительно значения сосудистых нервов в регуляции тепла будут приведены в дальнейшем изложении. Особенный интерес для исследователя издавна представляла установка влияния центральной нервной системы на выработку тепла в целях животной теплоты. Это же составит и главный предмет нашего изложения.
Но прежде чем пускаться в изучение этого влияния, необходимо, хоть кратко, обозреть способы, которые применяются при исследовании нашего вопроса, и взвесить их значение при выводах.
Этих способов три: термометрический, калориметрический и химический. К сожалению, ни один из них в настоящее время не может (или вследствие присущих ему недостатков, или вследствие физиологических затруднений) дать сам по себе вполне абсолютных заключений, так что гарантия верного вывода дается только согласием показаний их.
Начнем с термометрического [192] как наиболее простого по исполнению и наиболее обычного. Предполагаю инструмент вполне исправным с физической стороны. Положим, вы измеряете температуру, с одной стороны, внутри тела, лучше всего в rectum (понятно, что в сравнительных измерениях надо постоянно опускать инструмент на одинаковую глубину), с другой на периферии, в коже (например между пальцами лапы). Тогда может быть несколько случаев. При известных физиологических условиях температура одновременно повышается или понижается на обоих местах, или же она изменяется в них в противоположном смысле. Пусть внутри она повышается, снаружи падает. Из этого, во-первых, нужно будет заключить, что сосуды кожи сузились, потому что к периферии меньше притекает теплой крови. Но отчего повысилась внутренняя температура? Отчасти это непременно имеет свое основание в указанном сужении кожных сосудов, в уменьшении расхода тепла. Но вместе с тем может существовать и усиленная выработка, о чем, однако, решительно нельзя высказаться сколько-нибудь определенно, потому что нельзя рассчитать, до какой высоты внутренняя температура должна подняться только вследствие одного сужения кожных сосудов. Соответственно стоит дело и с противоположной комбинацией: понижения внутренней температуры с повышением наружной. Из этого справедливо заключить о распиирении сосудов кожи. Но происходит ли понижение внутренней температуры только от увеличения потери тепла на периферии (что несомненно) или вместе и от уменьшенной выработки опять остается неопределенным. Одноименный ход температуры как внутри, так и снаружи дает более оснований для суждения о выработке тепла. Если температура одновременно повышается и внутри и на периферии, то очевидно, что происходит усиленная выработка тепла; в обратном случае, понятие, наоборот. Но и эти заключения небезупречны. Обыкновенно измеряют как внутреннюю, так и внешнюю температуру только в одном пункте, a колебания температуры могут быть различны в различных местах, и поэтому этот метод никогда не может иметь претензии на строгую доказательность и только тем более будет ценен, чем в большем числе пунктов, особенно периферии, производят одновременно измерения.
Таким образом термометрический способ, безупречный с физической стороны и крайне простой в применении, относительно мало убедителен в вопросе о выработке тепла в силу чисто технико-физиологических затруднений.
Калориметрический метод находится в обратном положении. Как прибор, улавливающий и измеряющий все количество тепла, отдаваемое каким-либо телом, он должен превозмочь все физиологические затруднения.
Но в том и дело, что как физический инструмент в конструкуии для физиологических целей, несмотря на различные вариации, он до сих пор оставляет весьма многое желать. Калориметрическое данное есть вывод из большого числа измерений и вычислений и посему совмещает в себе много оснований для ошибки. Возьмем для примера водяной калориметр как наиболее часто применявшийся при физиологических опытах. Теплота животного отдается воде, составным частям калориметра, воздуху, проходящему через калориметр и служащему для дыхания животного, и в виде паров, выдыхаемых животным. Значит, должны быть измерены: количество воздуха и паров и температура как воды, так и воздуха. А чтобы главное измерение температуры воды было точно, необходимо вполне равномерное ее смешение, что почти и недостижимо при той массе воды, которую приходится употреблять в физиологических калориметрах. А затем существенное затруднение, что калориметр и сам охлаждается. Охлаждение же калориметра меняется, именно - делается тем больше, чем больше разница между его температурой и окружающей среды, но, к сожалению, при большой разнице меняется неправильным, плохо рассчитываемым образом. А между тем все эти цифровые данные потом приходится еще помножить на значительные цифры. К этому еще надо прибавить некоторую ошибку, имеющую основание в животном. Животное само за время опыта (по необходимости длиннного) нагревается или охлаждается, т. е. или прибавляет к раннему запасу своего тепла или отдает часть от него. Чтобы рассчитать это количество тепла точно, нужно, с одной стороны, знать изменение общей температуры тела, с другой - его теплоемкость. И первая и вторая только приблизительны. Таким образом ясно, что калориметрические данные должны приниматься осторожно, особенно, что касается до абсолютных цифр, получая цену только при сравнительном исследовании, где не водится больших физических разниц в обстановке.