Чтение онлайн

на главную - закладки

Жанры

Шрифт:

И вообще, буровой агрегат в целом подобен живому организму: двигатель станка с ротором — его сердце, гидравлическая система — мышцы, промывочная жидкость — кровь, колонна бурильных труб — своеобразная очень длинная рука. А буровое долото? Ну, это универсальное сверло в руках мощного и умного организма.

Поскольку горные породы по своим физико-механическим свойствам однообразием отнюдь не отличаются, то, естественно, и породоразрушающий инструмент (буровые наконечники) имеет великое множество самых разнообразных модификаций, различающихся по форме, размерам, оснащенности. Мягкие породы (такие как вязкие глины, пески, лёссы) разбуриваются лопатками и шнеками, напоминающими наконечник ручного ледобура; более

твердые (сланцы, известняки, доломиты) — стальными пиками с запрессованными в них твердыми сплавами; самые твердые (граниты, габбро-диабазы, кварциты) — коническими шарошками либо долотами, в торце которых находятся те же твердые сплавы или матрица с техническими алмазами (рис. 20). В середине наконечника любого типа обязательно есть сквозное отверстие для прохода промывочной жидкости.

Наибольшим распространением при бескерновом бурении пользуется долото, снабженное несколькими (от двух до шести) вращающимися конусами — шарошками, поверхность которых усеяна закругленными сверху штырями твердых сплавов. Вершины конусов направлены внутрь — к продольной оси бурового снаряда (рис. 21). При бурении долото вращается с частотой до 800–900 оборотов в минуту, еще быстрее крутятся его шарошки (кстати, буровики в обиходе этим ласковым словом называют все шарошечное долото, а не только его конусы); в результате сферические твердые сплавы с силой истирают забой. На долото, а вместе с ним на шарошки передается сверху такая огромная нагрузка (десятки тонн), что устоять против такого натиска не может никакая самая твердая порода.

Рис. 20. Алмазное долото.
1 — корпус; 2—матрица с техническими алмазами.

При забуривании скважины первое долото имеет очень внушительные размеры: диаметр его около полуметра, а иногда и поболее того. Приходится учитывать, что в процессе бурения потребуется не раз и не два закреплять стенки скважины трубами для перекрытия встречаемых на различной глубине неустойчивых пород и при различных геологических осложнениях. Каждое же очередное крепление неминуемо должно сопровождаться уменьшением диаметра долота, в противном случае долото просто не пройдет сквозь обсадные трубы и не сможет отбуривать нижележащие породы. Так что любая нефтяная скважина в разрезе телескопична, и чем больше начальный диаметр бурения, тем длиннее можно составить телескоп из труб и тем больше шансов, что скважина (при любых неожиданностях и осложнениях) выполнит стоящую перед ней задачу. Вот зачем нужен большой диаметр при забуривании.

Рис. 21. Шарошечное долото.
1—корпус; 2 — шарошки с твердосплавными штырями.

Однако всему есть предел. И так уж полуметровое зубастое долото трудно даже представить себе, впрочем, работать с ним еще труднее, поднимать его приходится многотонной лебедкой, а привинчивать к буровому снаряду — с помощью другого, не менее мощного механизма. И таким вот долотом производится углубка скважины примерно до 100–200 м, во всяком случае, до тех пор, пока не будут пройдены приповерхностные, самые рыхлые и обводненные отложения (так называемые «наносы»). В пробуренное отверстие опускается первая колонна толстостенных обсадных труб диаметром около 400 мм (16 дюймов). Нижний конец этой колонны «приваривается» к монолитным породам скального основания.

Далее диаметр скважины уменьшается до 394 мм. Долото такого диаметра свободно проходит через поставленные выше обсадные трубы и пробуривает породы уже до глубины порядка 1000 м, после чего в скважину опускается вторая колонна

обсадных труб, внутренний диаметр которых не превышает 300 мм. Соответственно уменьшается диаметр долота для последующего бурения. Ну и так далее. К концу бурения скважины диаметр ее уменьшается до 150–200 мм, а в пробуренном стволе стоят четыре-пять колонн обсадных труб, верхние торцы которых выходят на земную поверхность.

Начиная со второго диаметра (394 мм) скважина, как правило, проходится турбобуром. Турбобур представляет собой турбину, лопасти которой приводятся в действие промывочной жидкостью, подаваемой в скважину под большим давлением. Вместе с турбиной вращается и соединенное с ней буровое долото. Таким образом, на глубине вода (подобно воздуху при пневматическом бурении) становится основной движущей силой самого процесса бурения, выполняя и прочие свои обязанности: охлаждение инструмента, очистку скважины от шлама и т. д.

Турбинный способ бурения экономичен и эффективен по всем показателям. При обычном же бурении для вращения ротора, а вместе с ним и всей колонны бурильных труб требуются значительные затраты энергии, причем затраты эти по мере углубления скважины неуклонно возрастают. Добавим, что с глубиной увеличиваются скручивающие усилия на трубы, повышается их износ и уменьшается жесткость всей системы. Поэтому роторное бурение обычно применяется до сравнительно небольшой глубины.

При турбинном способе ротор неподвижен (!) — вращается только то, что и должно вращаться, а именно буровое долото. А бурильные трубы? Они тоже неподвижны и служат лишь для доставки породоразрушающего инструмента на забой, для передачи на него необходимой нагрузки, и по совместительству выполняют обязанности водопровода. Все просто и надежно.

Почему же не применить турбинный способ на малых глубинах, скажем, сразу при забуривании? Дело в следующем: вода на турбину подается в таком количестве и под таким давлением, что при малой глубине скважины вода будет фонтанировать, и работать на буровой вышке придется под проливным глинистым дождем. На достаточной же глубине фонтанирующая энергия гасится столбом жидкости, которую просто так уже не вытолкнуть на поверхность.

Мы говорим: «вода охлаждает», «вода выносит», «вода вращает», однако чистая вода в качестве промывочной жидкости при нефтяном бурении практически не применяется. Только растворы. Чаще всего глинистые либо глинистые с полимерами. Такие растворы лучше захватывают шлам, а следовательно, быстрее и качественнее очищают забой. Кроме того, глина постепенно оседает на стенках скважины, замазывает поры и трещины в породах, временно (до обсадки трубами) удерживая их от осыпания. Ну и наконец, главная задача глины в промывочном растворе — это повышение его плотности. Зачем?

Скважина отбуривается на нефть, и мы ожидаем (и не просто ожидаем, а очень хотим) встретить залежь. Чем крупнее, тем лучше. Так вот, на глубине, скажем, 3000 м внутрипластовое давление в залежи будет составлять примерно 330 кгс/см2. Компенсировать такое давление можно лишь достаточно плотным раствором, например глинистым с плотностью 1,2 г/см3. Менее плотный раствор давление выбьет из скважины, как пробку из шампанского. Чем выше плотность раствора, тем надежнее закупорка скважины и тем больше есть времени для почетной встречи нефти на поверхности. Именно поэтому с самого начала бурения, и особенно после 1000-метровой глубины, ведется непрерывный и очень тщательный контроль за параметрами промывочной жидкости. Расчеты, анализы, проверки-перепроверки.

И вообще, нефтяное бурение — это весьма напряженный и ответственный труд. Буровики-нефтяники постоянно, ежеминутно работают как бы на огромной пороховой бочке — на нефтяной или газовой залежи.

Их основная задача и состоит в том, чтобы проникнуть в эту «бочку», осторожно вскрыть ее, причем «бочка» находится обычно на неопределенной глубине. Внимательным и осторожным должен быть буровик всегда и во всем, ибо в любой момент клокочущая энергия кедр может вырваться в тонкий, «волосяной», ствол скважины. И тогда, как спички, полетят в воздух многотонные трубы, прочий инструмент, на десятки метров взметнется фонтан промывочной жидкости, а следом за ней — и нефти с газом.

Поделиться:
Популярные книги

Вдовье счастье

Брэйн Даниэль
1. Ваш выход, маэстро!
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Вдовье счастье

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Прорвемся, опера! Книга 4

Киров Никита
4. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 4

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая