Происхождение мозга
Шрифт:
Беспозвоночные были первыми многоклеточными обладателями нервной системы. Эволюция этой группы животных наполнена запутанными и драматическими коллизиями, которые пока не входят в круг нейробиологических интересов. Стараясь не вмешиваться в проблемы эволюции беспозвоночных, мы рассмотрим только самые общие принципы организации их нервной системы.
§ 20. Нервная система с радиальной симметрией
Наиболее простой вариант строения нервной системы мы встречаем у стрекающих (кишечнополостных).
При всей кажущейся простоте диффузный тип нервной системы обеспечивает довольно сложное поведение кишечнополостных. Хорошо известно, что раки-отшельники используют актиний для защиты от хищников. Они выбирают наиболее подходящих особей и пересаживают их себе на раковину. Классическим примером является симбиоз актиний и рака-отшельника. Однако мало известно, что сами актинии также могут выбирать наиболее подходящую поверхность раковины и перемещаться на неё. Иначе говоря, актинии такие же активные, хотя и бессознательные, участники симбиоза, как и раки-отшельники (Холодковский, 1914; Meglitsch, Schram, 1991).
В скромных рамках диффузной нервной системы известно необычайно большое количество вариантов строения. Их всех объединяют радиальная или изоморфная симметрия и общая тенденция к объединению нервных клеток в некие скопления. С момента появления пронейральной сети у губкоподобных организмов началась дифференциальная концентрация нервных элементов. В начале эволюции многоклеточных животных появилось бесконечное разнообразие вариантов строения нервной системы, которые реализовались у кишечнополостных и частично сохранились до нашего времени (см. рис. II-4).
Нервные клетки концентрировались различными способами. Самым простым способом интеграции нервных сетей стало окологлоточное нервное кольцо. Его появление вполне оправдано тем, что оно находилось на границе поступления пищи в организм кишечнополостных. Пища была тем ведущим стимулом, который определял и оценивал успех морфологических изменений нервной системы. Тот, кто мог эффективнее контролировать поступление пищи, увеличивал свой метаболизм и репродуктивные возможности. Самым простым движением, позволяющим проиллюстрировать действие диффузной нервной системы, является реакция на механическое раздражение. Пресноводная гидра (Pelmatohydra oligactis) при малейшем раздражении сжимается в микроскопический комочек. Это происходит за счёт расположенных продольно в эктодерме и поперечно в энтодерме сократимых белков. Кроме генерализованной реакции, кишечнополостные могут дифференциально пользоваться отдельными щупальцами или их группами. Гидры способны передвигаться, чередуя при переворотах опору на подошву и ротовое отверстие.
Тем не менее диффузная сеть с окологлоточным нервным кольцом была относительно медленно действующим устройством. Измеренная проводимость по нервной сети кишечнополостных составляет не более 5-20 см/с. Этого явно не хватает животным размером более 5 см, поэтому уже у актиний выделились участки нервной сети с высокой скоростью проведения (см. рис. II-4, в). В некоторых случаях она достигает
см/с, что делает актиний изощрёнными охотниками за значительно более эволюционно продвинутыми позвоночными. Окологлоточное нервное кольцо
Среди предков современных одиночных актиний явно были свободноплавающие существа. На это указывает двойная нервная сеть в их теле (см. рис. II-4, б). Одна диффузная сеть расположена под эктодермой в мезоглее и ничем не отличается от таковой у других кишечнополостных (см. рис. II-4, а). Другая нервная сеть лежит в той же мезоглее, но уже около энтодермы. Они связаны между собой только в зоне окологлоточного нервного кольца, которое начинает играть как интегрирующую, так и разделяющую роль. По-видимому, такие двойные сети возникли на заре эволюции нервной системы и были нужны для активного свободного плавания. Животное с автономной «эктодермальной» сетью могло активно двигаться в толще воды. Сокращение эктодермальных клеток позволяло животному перемещаться, не вовлекая в этот процесс пищеварительную систему.
Рис. II-4. Предполагаемые первые этапы (показано стрелками) усложнения строения нервной системы кишечнополостных с радиальной симметрией.
а — однослойная сеть примитивных гидроидов; б — двойная нервная сеть актиний; в — нервная сеть актиний со скоростными проводящими цепями клеток; г — нервная сеть восьмилучевого полипа; д — нервный аппарат радиально-комиссурального типа.
Не исключено, что мезоглея была у этих существ намного толще и рыхлее. Пищеварительная нервная сеть с энтодермальными сократимыми клетками функционировала относительно автономно, перемещая пищевые частицы без эктодермальных сокращений. Такой самодвижущийся пылесос мог быть крайне эффективным при избытке мелких пищевых частиц. Эволюционные преимущества подвижных фильтраторов хорошо известны, поскольку усатые киты являются самыми крупными животными на планете.
Совершенно иная нервная система у свободноплавающих сцифоидных медуз. Они преимущественно хищники с диффузной нервной системой, которая интегрируется околоротовым круговым скоплением нейронов и несколькими нервными кольцами в зонтике. Эти существа имеют интересные высокоспециализированные участки нервной системы — ропалии. Это небольшие скопления нейронов по краям зонтика. Ропалии могут содержать статоцисты, или светочувствительные глазки. В статоцистах конкреции различной природы образуют давящий на нейроны «камушек». Он позволяет определять направление на гравитационный центр Земли и ориентировать тело в воде. Глазки измеряют освещённость, а движущиеся волны механически влияют на нервную сеть, что позволяет медузам выбирать направление движения. Подобные нервные образования не смогли стать значимыми центрами для интеграции поведения кишечнополостных, но были первыми специализированными органами чувств. Подобные примитивные рецепторные системы неоднократно возникали в эволюции, что подтверждается разнообразием их структурной организации при общей убогости рецепторных возможностей.
Можно предположить, что потенциальный предковый вариант строения нервной системы беспозвоночных выглядел как некое кишечнополостное со скоростными тяжами проведения нервных клеток (см. рис. II-4, в). Если допустить эволюционное продолжение концентрации нервных клеток, то из такой морфологической организации с равной вероятностью могла появиться нервная система двух типов строения (см. рис. II-4, г, д). Эти типы различаются только по туловищным комиссурам, которые соединяют продольные нервные стволы.