Чтение онлайн

на главную - закладки

Жанры

Происхождение мозга

Савельев Сергей Вячеславович

Шрифт:

Сравнительный подход заставляет копытных решать проблему питания при помощи перебора и сравнения вариантов, сохраняющихся в памяти. Поскольку в поисках травы они вынуждены переходить с места на место, возникает ещё один компонент сравнения — пространство (место, где был съеден корм). Сравнение пастбищ позволяет передвигаться от плохих мест кормёжки к хорошим, что и лежит в основе многих сезонных миграций. Однако все перечисленные события развиваются в рамках наследуемых видоспецифических форм поведения. Эти формы хорошо адаптированы к изменяющимся условиям из-за развитых органов чувств и обширной памяти. О мышлении в описанной ситуации говорить не приходится, но суть морфогенетической активности мозга от этого не меняется. Память и способность нейронов образовывать новые связи лежат в основе как творческого мышления, так и поиска свежей луговой травы.

Поиск новых решений начинается только тогда, когда складывается неразрешимая в рамках видоспецифического поведения ситуация. Заставить мозг затрачивать дополнительную энергию на поиск пищи можно только тогда, когда все ресурсы перебора стандартных вариантов исчерпаны. С этого момента

начинается индивидуальное решение возникших проблем. Индивидуальный подход определяется вариабельностью нервной системы. Эти особенности в стабильных условиях среды остаются невостребованными, но могут лучше всего проявиться в необычной ситуации. Если животное или человек не может применить стандартного решения, то начинается процесс мышления.

Мышление как поиск новых решений возникающих биологических проблем состоит из нескольких параллельных процессов. Его базой является память, которая должна охватывать достаточно много разнообразных явлений, имеющих какое-либо отношение к решаемой проблеме. По сути это циклическая активность передачи информационных сигналов в специализированных нейронных комплексах.

Комплексы, или сети, нейронов содержат разнообразные потоки постепенно стирающейся информации. Если она касается одного вопроса, то может частично перекрываться, проходя по одним и тем же клеткам (см. рис. 23). Нахождение нового решения заключается в образовании новых систем связей между уже существующими в памяти системами нейронных комплексов. Если такая связь устанавливается, то появляется новая, неожиданная цепь взаимодействий. Эта система связей возникает не как память, обслуживающая органы чувств, а как компиляция уже хранящихся взаимодействий (см. рис. I-23). Понятно, что установление связей может происходить как по кратковременному, так и по долговременному типу. Если связи оказываются кратковременными, то и новая система взаимодействий может оказаться неустойчивой и быстро разрушиться. При возникновении долговременных связей новая сеть нейронных взаимодействий может стать долгоживущей или даже вытеснить предшествующую цепь. Для человека это может выражаться в том, что называют ассоциациями. Какое-либо явление или предмет постоянно связывается с событиями или воспоминаниями, которые не имеют к нему никакого отношения.

Формирование новых коммуникационных цепей может приводить к появлению как адекватных, так и неадекватных вариантов поведения. У рептилий успешность найденного решения обычно проверяется в действиях. Птицам и млекопитающим свойственна небольшая отсроченность действий, во время которой происходит проверка неожиданного варианта поведения. Проверка осуществляется сравнением с имеющимися в памяти циклами активности нейронов или моделированием последующих событий. Если расхождения в цикличной активности нейронов с имеющимися вариантами невелики, то поведенческий проект реализуется. Существенные расхождения вызывают отсрочку действия или его полную отмену. Следовательно, мышление — это процесс, навязанный мозгу постоянно протекающим морфогенезом случайного образования и разрушения нейронных связей. Морфогенетическая активность нейронов врождённая. Она необходима для запоминания нужной информации, поступающей от рецепторных систем организма, и выбора моторной активности. Постепенно в мозге накапливаются сети медленно затухающих контактов нейронов, содержащих разнообразную информацию. При необычных обстоятельствах между этими сетями могут формироваться внутренние связи. Появление таких связей объединяет ранее разобщённые сети и приводит к возникновению новых нейронных сетей. Такие функциональные сети не могут сформироваться на основе запоминания информации, идущей от органов чувств. Они ассоциативны по природе и являются результатом интеграции автономных явлений в головном мозге.

Отвечая на философский «гносеологический вопрос» о мышлении, можно сказать, что он имеет «приятную» историческую ценность. Проблема мышления решается с помощью двух параллельных процессов: априорных способностей нейронов образовывать связи и апостериорных возможностей мозга, который может получать и накапливать информацию о внешнем мире. Эти явления удаётся разделить и противопоставить друг другу только умозрительно. Реальных оснований Для натурфилософских конфликтов одноимённых процессов пока не Установлено.

Следует напомнить, что мышление — ещё более затратный процесс, чем элементарное запоминание. Организм животного и человека тщательно избегает малейших намёков на любую деятельность мозга, прямо не связанную с пищей или размножением. Затраты мозга на поиск нестандартных поведенческих решений могут быть огромны, а результаты сомнительны. Выгода от мышления столь биологически эфемерна, что его старается избегать даже человек. Вся социальная структура сообществ животных и человека построена так, чтобы мышление как процесс поиска новых решений старых проблем не могло реализовываться в стабильных условиях среды. Иначе говоря, мышление — не постоянное свойство млекопитающих, а резервная система. Она возникла как артефакт способности нейронов образовывать и разрушать связи между собой. Пока головной мозг был маленький, а нейронов немного, эти свойства нервных клеток приводили только к элементарному запоминанию и сравнению результатов собственной активности. Когда же мозг стал большим, а число нейронов — составляющим миллиарды, свойства нейронов сыграли с млекопитающими злую шутку. Возникла устойчивая и изощрённая память, а на её основе — способность к сравнению и установлению скрытых связей между явлениями и предметами. Механизм мышления оказался для мозга затратным и биологически сомнительным, поэтому животные и человек всячески избегают использования этого свойства мозга в стабилизированной среде обитания. Однако в мышлении проявляются кое-какие преимущества, когда стабильность среды нарушается. Тогда любая нестандартность поведения может изменить жизнь особи в лучшую или худшую сторону. Такая нестандартность должна быть, иначе выживание будет зависеть от случайности. По-видимому, появлением мыслящих существ мы обязаны очень нестабильной среде и длительным вынужденным

затратам мозга, когда-то «культивировавшего» этот странный артефакт.

Глава II. Возникновение нервных клеток и мозга

Причиной возникновения нервной системы стала низкая скорость получения информации о внешнем и внутреннем мире организма с донервной организацией. Его ткани состояли из клеток со сходной химической, электромагнитной и механической чувствительностью. Такой организм не мог оперативно получить дифференцированные сведения из внешнего мира и от собственного тела (Lipps, Signor, 1992). Решение проблемы без участия нервной системы было найдено растениями и одноклеточными животными, что разбиралось в главе I. Этот путь оказался биологически очень успешным и привёл к появлению процветающих групп организмов. Можно сказать, что растения и одноклеточные животные выиграли ничуть не меньше, чем животные с развитой нервной системой. Тем не менее нервная система возникла. Она давала одно, но огромное преимущество, которого невозможно достичь при помощи универсальных свойств неспециализированных клеток. Это увеличение скорости реакции организма на изменяющиеся внутренние и внешние условия. Как только нервная система позволила животным быстро адаптироваться к изменяющимся условиям, активно разыскивать пищу и половых партнёров, наступило время динамичной эволюции животного мира. Скорость решала почти все проблемы. Конкуренция за источники питания привела к появлению бесконечного разнообразия растительноядных организмов, но они сами были питательнее растений. Ещё более быстрые и эффективные хищники должны были обладать более совершенной нервной системой, чем травоядные. Это касалось как позвоночных, так и беспозвоночных животных. Кто обладал эффективной нервной системой, тот быстрее поднимался на вершину пищевой цепочки, питаясь не грубой растительной пищей, а калорийными родственниками. В самом общем виде эта ситуация сохранилась и в социальных структурах высших приматов.

Преимущества и достоинства нервной системы вполне понятны. Причины её появления вполне логичны и не вызывают сомнения. Совершенно иная ситуация с вопросом о том, как это произошло. Нет ясного представления о механизмах появления первых нервных клеток. Почему они дифференцировались от других тканей и от чего возникли их уникальные свойства? Почему мозг позвоночных имеет 5 гомологичных отделов? Почему так различно поведение животных из одной систематической группы и так сходно у отдалённых видов? Как возникли и строились ассоциативные центры на различных структурных принципах? Эти вопросы пока остаются без ответа. Не менее принципиальны проблемы становления мозга при появлении первых хордовых, выходе позвоночных на сушу, появлении птиц и млекопитающих. Эти глобальные эволюционные события требовали перестройки нервной системы и органов чувств. Как это могло произойти с такой консервативной и инертной системой, как мозг? Его же нельзя частично выключить из работы или рудиментировать, как задние конечности у китообразных. В нервной системе происходили процессы, совершенно не похожие на эволюцию конечностей, позвоночника, сердца, лёгких или хвоста. Эволюционные преобразования в нервной системе не укладываются полностью в рамки традиционной морфологической методологии. В связи с этим мне пришлось несколько адаптировать приёмы эволюционной морфологии к реконструкции событий, произошедших в непроверяемом прошлом.

Происхождение нервных клеток

Происхождение нервных клеток в процессе эволюции животных довольно спорно. Существует несколько основных точек зрения на эту проблему. Наибольшее распространение получила точка зрения братьев Гертвигов (Hertwig, 1878). Их гипотеза состоит в том, что нервные и мышечные клетки происходят из эктодермального эпителия. Они возникают независимо друг от друга и вступают во взаимодействия уже вторично (рис. II-1, а-в). В соответствии с гипотезой Гертвигов источником всех нервных клеток является первичная чувствительная клетка, возникшая из эктодермы и получившая возможность воспринимать раздражения, генерировать и проводить возбуждение. Специализированные отростки этих клеток вступают в связь с независимо возникшими мышечными клетками. По мнению авторов этой гипотезы, мышечные волокна возникли из клеток, сходных с эпителиально-мышечными клетками кишечнополостных. Такой простейший нервно-мышечный комплекс развивается по пути дифференциации нервного аппарата, что приводит к возникновению вставочных нейронов или ганглиев (см. рис. II-1, в). Нервная система подразделяется на чувствительные клетки, лежащие в эктодерме, и вставочные нейроны, обладающие интегративной функцией. Вставочные нейроны являются предвестниками централизации обработки сенсорной информации и возникновения мозга. На выходе расположены эффекторные нейроны, иннервирующие мышцы и железы.

Другая точка зрения на происхождение нервных клеток сформировалась в работах Клейненберга и Заварзина (Kleinenberg, 1872; Заварзин, 1950). Её суть сводится к тому, что нервная и мышечная системы рассматриваются как «единое и нераздельное целое».

а-в — гипотеза братьев Гертвигов; г-е — гипотеза Клейненберга-Заварзина. По гипотезе Гертвигов нервные и мышечные клетки происходят независимо из эктодермы, а затем объединяются в нервномышечный комплекс. По представлениям Клейненберга-Заварзина, из эктодермы возникает клетка одновременно с сенсорными и моторными функциями. Затем она дифференцируется на нервную и мышечную системы. Красные — мышечные клетки или волокна, синие и фиолетовые — чувствительные нервные клетки.

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III