Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Рисунок П10.Гипотеза Линделёфа.
Строка 24.Можно доказать, что ГЛ эквивалентна утверждению, которое ограничивает число нулей дзета-функции вне критической прямой. Если ГР верна, то, конечно, таких нулей не должно быть вовсе. Но как уже отмечалось, из доказательства ГР последует и ГЛ.
Строка 31. «А ТРПЧ можно все улучшать» — т.е. получить наилучшее возможное выражение типа большого для остаточного члена.
Строка 32.При обычном интегрировании, как мы определили его в главе 7.vii, интегрируют вдоль оси x, от некоторого числа aдо какого-то большего числа b.
Строка 33. «Вейль обратился к предмету…».В этих последних куплетах говорится об алгебраическом подходе, упоминавшемся в главе 17.iii, и о результате А. Вейля 1942 года.
Строка 34.« Используя более хитрую дзету» — другими словами, один из упоминавшихся в главе 17.iii аналогов дзета-функции, связанных с конечными полями.
Строка 35.Мы определили характеристикуполя в главе 17.ii. Аналоги ГР были доказаны только для дзета-функций, связанных с полями ненулевой характеристики — т.е. характеристики, равной некоторому простому числу p.
Строка 36.«… теорема верна».Благодаря А. Вейлю известно, что аналоги ГР для этих специальных полей верны.
Строка 40.Слова «по модулю p» используются здесь в смысле арифметики циферблата из главы 6.viii; как отмечалось в главе 17.ii, здесь имеется связь с теорией полей.
220
Упомянутые в главе 8.ii условия Коши-Римана, которые определяют «хорошо ведущие себя функции», как раз выделяют такие функции, для которых зависимость от контура, по которому ведется интегрирование между двумя заданными точками на комплексной плоскости, носит контролируемый, «дискретный» характер. (Примеч. перев.)
В Интернете можно найти варианты этой песни, несколько отличающиеся оттого, что написан Томом; среди них я отмечу один, который заканчивается строчкой Use R.M.T. and you'll have better luck.Это добродушный пинок в сторону «физического» подхода: R.M.T.означает random matrix theory— теорию случайных матриц.
Организации и частные лица, предоставившие возможность воспроизвести портреты
Леонард Эйлер, Джордж Пойа —воспроизводится с разрешения Джеральда Александерсона. Фрагмент из письма Дж. Пойа в главе 17 — с разрешения Эндрю Одлыжко.
Петр Великий— художник Жан Марк Натье (1717). Государственный Эрмитаж, Санкт-Петербург.
Лежен Дирихле, Карл Гаусс, Давид Гильберт —Deutsches Museum.
Герцог Брауншвейгский —Braunschweigisches Landesmuseum.
Бернхард Риман— в начале 1950-х — с разрешения Михаила Монастырского; 1863 — с разрешения Staatsbibliothek zu Berlin, Preussischer Kulturbesitz.
Рихард Дедекинд, Эдмунд Ландау, Карл Зигель —Nieders"achsische Staats- und Universit"atsbibliothek, G"ottingen; Abteilung f"ur Handschriften und seltene Drucke.
Шарль де ля Валле Пуссен —Louvain-la-Neuve, Archives de I'Universit'e Catholique de Louvain, CHUL.
Жак Адамар —Archives of Woodson Research Center, Fondren Library, Rice University.
П.Л. Чебышев— Государственная библиотека имени Максима Горького, Санкт-Петербургский государственный университет.
Ален Конн, Хью Монтгомери, Эндрю Одлыжко, Атле Сельберг —фотографии C.J. Mozzochi, Princeton, NJ, USA.
Годфри Хэролд Харди, Дж. И. Литлвуд —The Master and Fellows of Trinity College, Cambridge.
Йорген Педерсен Грам —фрагмент картины «Собрание Академии» П.С. Кройера, написана в 1895-1897. The Royal Danish Academy of Sciences and Letters.
Алан
Эмиль Артин —Princeton University Library.
Андре Вейль, Пьер Делинь—фотографы Herman Landshoff (Вейль), Randall Hagadorn (Делинь). Archives of the Institute for Advanced Study, Princeton.
Фримен Дайсон— с разрешения Ф. Дайсона.
сэр Майкл Берри —с разрешения М. Берри.
Эрнст Линделёф —фотография W. Sj"orstr"om (1930). Helsinki University Museum.
Харальд Крамер— с разрешения профессора Андерса Мартин-Лефа, Факультет математической статистики Стокгольмского университета.
Тай-е— фотография автора.
Примечания и дополнения автора, сделанные в середине 2003 года
«В современный анализ эти концепции не допускаются».На самом деле существует «нестандартный» анализ, построенный на основе строгого определения «бесконечно малой величины». Это направление связано главным образом с работами А. Робинсона в 1960-х годах (хотя некоторые идеи восходят к Гильберту). Нестандартный анализ полностью обоснован и сам по себе достаточно интересен, но он не оказал большого влияния на текущую работу математиков в той области, о которой я пишу. И более того, моя книга направлена на объяснение обычного анализа для неспециалистов, и поэтому я не собирался отклоняться от темы в эту сторону. Наверное, следовало бы сказать «В современный стандартный анализ…», но и это уже до некоторой степени замутило бы воду. В общем, примечание с объяснением тут вполне уместно…
Что касается подробностей запутанной истории с Сельбергом и Эрдешем, то мои намерения состояли в том, чтобы сохранять некоторую дистанцию, дабы самому не стать ее участником. Вокруг этой темы все еще накаляются страсти. Я столкнулся с ней только при написании книги, и, если не считать двух прочитанных (и отрецензированных) мною биографий Эрдеша, единственной точкой соприкосновения был разговор с Атле Сельбергом, состоявшийся в 2002 году. Несмотря на прошедшие 53 года, эта история явно его расстраивала.
После выхода в свет «Простой одержимости» я получил несколько бумажных и электронных писем по поводу данного раздела. Один мой корреспондент воспринял мой рассказ как «едкий сарказм» — характеристика, которая привела меня в недоумение. Всякий, кто думает, что предпоследний абзац в главе 8.iii представляет собой «едкий сарказм», просто не много оттуда понял. Я совершенно не собирался излагать это с каким бы то ни было сарказмом, а, наоборот, сохранял в споре полный нейтралитет. Однако мой собственный нейтралитет не может помешать мне сообщить следующий простой факт: большинство из тех, кто мне писал по данному поводу, выбирают сторону Сельберга, несмотря на не подлежащий сомнению факт, что Эрдеша практически все буквально обожали.
Например, нижеследующее написано заслуженным профессором в отставке из Сиракузского университета Эриком Хеммингсеном (приводится с его разрешения). Профессор Хеммингсен сначала обращает внимание на то, что, хотя Сельберг действительно работал в Институте высших исследований в то время, когда его статья вышла из печати, всю работу он в действительности проделал, пока был в Сиракузском университете. Профессор Хеммингсен далее пишет:
Сельберг находился с визитом в Институте в течение академического 1947/48 года, когда он пересекся с одним из моих коллег, который в тот год также находился там с визитом. Сиракузский университет был первым, кто предложил Сельбергу исследовательскую работу в Америке, и вместе с женой они приехали в Сиракузы как раз перед началом осеннего семестра 1948 года. Они вернулись в Принстон летом 1950 года.
Когда я приехал в Сиракузы в сентябре 1947 года, Эрдеш уже находился там. Он был моим старым знакомым по Пенсильванскому университету, где он уже работал, когда я там появился в 1941 году в качестве аспиранта. Мы оба провели в Пенсильванском университете несколько лет, и он был очень любезен по отношению ко мне.
Сельберг, естественно, был очень рад, что ему удалось найти свое доказательство Теоремы о распределении простых чисел, и примерно равный ему по возрасту коллега, выказывавший серьезный интерес к теории чисел, представлялся подходящей фигурой для того, чтобы говорить с ним о своей работе. К сожалению, это было огромной ошибкой, настолько печальной [sic], что теперь некоторые люди считают, что доказательство принадлежит Эрдешу. После смерти Эрдеша появилась статья в Notices of the Amer. Math.Soc., автор которой дошел до того, что утверждал, будто Теорема о распределении простых чисел — это лучшая из работ, сделанных Эрдешем. Меня это исключительно покоробило, и я решил записать свои собственные впечатления о том, что имело место. Этот рассказ в настоящее время хранится в математической библиотеке Сиракузского университета.